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Ionization of atoms by strong laser fields produces photoelectron momentum distributions that exhibit
modulations due to the interference of outgoing electron trajectories. For a faithful modeling, it is essential
to include previously overlooked phase shifts occurring when trajectories pass through focal points. Such
phase shifts are known as Gouy’s phase anomaly in optics or as Maslov phases in semiclassical theory.
Because of Coulomb focusing in three dimensions, one out of two trajectories in photoelectron holography
goes through a focal point as it crosses the symmetry axis in momentum space. In addition, there exist
observable Maslov phases already in two dimensions. Clustering algorithms enable us to implement a
semiclassical model with the correct preexponential factor that affects both the weight and the phase of each
trajectory. We also derive a simple rule to relate two-dimensional and three-dimensional models for linear
polarization. It explains the shifted interference fringes and weaker high-energy yield in three dimensions.
The results are in excellent agreement with solutions of the time-dependent Schrödinger equation.
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The π phase shift of an electromagnetic wave as it passes
through a focus is an astonishing effect. Even though it was
already observed by Gouy [1] more than 100 years ago,
recent advances in laser technology have shone new light
on Gouy’s phase [2–5]. Analogous phenomena have also
been found in other types of waves such as acoustic waves
[6], standing microwaves [7], phonon-polariton wave
packets [8], and matter waves [9–11]. While a rigorous
derivation of the phase jump is nontrivial, an intuitive
picture is as follows. In a trajectory description, the passage
of a wave through a focus means that the spatial extension
of a bunch of trajectories (such as the spot size formed by
geometric rays) goes through zero. If this spatial extension
is defined with sign, there is a sign change at the focus.
Wave amplitudes are inversely proportional to the square
root of the interval size, so a sign change of a one-
dimensional interval length leads to a �π=2 phase shift
of the wave. The well-known optical Gouy phase of π arises
because a light beam is typically focused in two variables:
A two-dimensional area is focused to a point.
In the present work, we demonstrate that Gouy’s phase

anomaly appears in electron wave packets produced by
strong-field ionization, leading to a significant imprint on
interference structures in photoelectron momentum distri-
butions (PMDs). Strong-field ionization may be viewed as
a two-step process consisting of (i) release of an electron
from the target and (ii) acceleration of the electron by the
electromagnetic field in the presence of the potential of the
parent ion [12,13]. Depending on the system geometry,
different parts of the emitted wave packets are mapped to
the same final momentum, creating interference structures
[14–18]. As the positions of the interference fringes are
determined by the phase difference between the wave

packets, the emerging PMD may be viewed as a “phas-
ometer.” For linearly polarized laser pulses, the PMDs are
dominated by photoelectron holography [16,19–23] that
may be explained by the interference of a “signal” wave
that is scattered upon return to the parent ion and a
nonscattered “reference” wave [24,25]. In full dimension-
ality (3D), Coulomb focusing makes rescattering wave
packets pass through a focal point [26] and, as we show, it
causes the appearance of Gouy’s phase shift. This happens
not only in linear polarization but also in other waveforms
that give rise to rescattering. Because Coulomb focusing
acts in 1 degree of freedom, it causes π=2 phase shifts, no
matter whether the system possesses cylindrical symmetry
or not. It explains why PMDs obtained by numerical
solution of the time-dependent Schrödinger equation
(TDSE) in full dimensionality (3D) agree well with
experimental data [16,20], but PMDs obtained in reduced
dimensionality (2D) are unable to reproduce quantitatively
the fringe positions and heights seen in experiments [21].
Thus, it turns out that strong-field ionization is an ideal
setup for observation of focal-point phases as it generates
the fundamental value of π=2 and, without extra effort, it
provides the interference with a reference trajectory.
In order to provide an illustrative picture in terms of

classical trajectories, several attempts were undertaken to
describe PMDs in the presence of ionic potentials semi-
classically. The resulting models are able to explain
qualitatively the various types of interference structures
[27–33]. However, since these models assume almost
always that a slice through the 3D dynamics is equal to
the corresponding 2D dynamics, they are unable to repro-
duce the positions of the holographic fringes in 3D and the
relative weights of various kinds of trajectories. Putting
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aside the question of dimensionality, we note that
approaches using the semiclassical phase based on
Feynman’s path integral [31,32] are promising since they
lead to the correct number of interference fringes [15,31–
34]. Using a glory rescattering model, the shape of the
central maximum of the interference pattern was recently
described [35–37]. However, without taking interference
between different types of trajectories into account, the
glory model cannot correctly predict the interference
patterns.
In this Letter, we explain quantitatively the interference

structures in PMDs by refining the semiclassical descrip-
tion. The central ingredient is the preexponential factor of
the semiclassical propagator [38,39] that has been given
little attention previously. Its modulus influences strongly
the weights of the trajectories. Its phase known as the
Maslov phase affects the interference structures. We ana-
lyze the focal-point structure of the system and calculate the
corresponding Maslov phase which can be identified as a
case of Gouy’s phase anomaly. For the analysis of the
semiclassical trajectories, we propose a method that com-
bines the shooting method [16] with a clustering algorithm
to determine all initial momenta that are classically mapped
to the given final momenta (inversion problem). This
enables us to go beyond [27–31] and to include the correct
trajectory weights efficiently.
We begin by calculating PMDs by numerical solution of

the TDSE in single-active electron approximation using the
split-operator method [37]. In 3D calculations, we choose an
effective potential for helium [40] converted into a pseudo-
potential for the 1s state [41]. In 2D calculations, this
potential is further softened by replacing r →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 0.34

p
,

providing a 2D helium model with correct ionization
potential Ip ≈ 0.9 a:u: To obtain clean interference struc-
tures, we study the ionization dynamics for two-cycle laser
pulses as in Ref. [37]. Note, however, that the effects
discussed below are also present for longer femtosecond
pulses.
The PMDs for pulses polarized linearly along the x axis

from solution of the TDSE are shown in Figs. 1(a) and 1(b).
Because of the rotational symmetry in 3D, it is sufficient to
show a 2D slice at py ¼ 0. For px < 0, “direct” non-
scattered electrons concentrated along the polarization axis
dominate the distributions at momenta below the classical
cutoff (jpxj ≈ 1.63 a:u:), whereas for px > 0, holographic
fringes roughly parallel to the polarization axis (x axis) are
visible. Both regions are overlaid with intracycle interfer-
ences roughly parallel to the z axis [15]. The weaker
contribution of high-energy electrons, which extends over a
large range of momenta pz (mostly jpzj > 0.5 a:u:), results
from hard rescattering [42,43] and exhibits interference
rings [44,45]. Even though the 2D and 3D PMDs show the
same overall structures, there are obvious differences in the
positions of the interference fringes and in the relative
strengths of different regions.

Our semiclassical model is based on a combination of
strong-field approximation (SFA) in saddle-point approxi-
mation (SPA) and semiclassical approximation to the time-
dependent propagator formulated as path integral (see
Refs. [46,47]) similar to Ref. [32]. We neglect the ionic
potential V during the release of an initially bound electron
so that this step may be described within the SFA. We
introduce connections between initial degrees of freedom
such as in Refs. [27–29]: For each initial momentum p0 the
possible release times t0 are given by the real part of the
complex-valued SFA saddle-point times t0 ¼ t0 þ itt. For
its acceleration, the electron starts at the corresponding
“tunnel exit” position given by r0 ¼ Re½R t0

t0 dτAðτÞ� with
an initial velocity _r0 ¼ p0 þAðt0Þ. The dynamics from
release time t0 to final time tf → ∞ is modeled by a
semiclassical approximation to the mixed position-momen-
tum-space propagator hpjUðtf; t0Þjr0i such that electric
field and Coulomb potential are included in a nonpertur-
bative manner. This involves real-valued trajectories sat-
isfying classical equations of motion (EOM) governed by
the HamiltonianHðr;p; tÞ ¼ 1

2
½pþAðtÞ�2 þ VðrÞ with the

electric field EðtÞ ¼ −∂tAðtÞ. As an improvement, com-
plex trajectories can be used [48–50], but we have con-
firmed that they lead to only minor changes of our
observations.
The PMD is proportional to the modulus squared of the

transition amplitude which can be approximated in terms of
trajectories as (Van Vleck approximation)

MpðtfÞ ∝
X
s

DCCoulffiffiffiffiffiffiffiffiffiffiffiffiffijJðtfÞj
p eiðS

0
↓þS→−νπ=2Þ; ð1Þ
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FIG. 1. PMD in 2D [(a),(c)] and a slice along py ¼ 0 in 3D [(b),
(d)] for helium ionized by a two-cycle laser pulse with 4 ×
1014 W=cm2 intensity and 800 nm wavelength. The distributions
are calculated by numerical solution of the TDSE in (a),(b) or
with the semiclassical model in (c),(d).
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where s labels all possible initial momenta p0 that are
classically mapped to the given final momentum p. The
matrix elementD is the prefactor from the SFA in SPA, and

C2
Coul ¼ ½4Ip=jEðt0Þj�2=

ffiffiffiffiffi
2Ip

p
is the Coulomb correction of

the ionization rate [27,51,52]. The action associated with
each trajectory is split into a complex-valued part corre-
sponding to the ionization step

S0↓ ¼ Ipt0 −
Z

t0

t0
dt

½p0 þAðtÞ�2
2

ð2Þ

and a part corresponding to the acceleration step [31]

S→ ¼ −
Z

∞

t0

dt

�
1

2
_r2ðtÞ þ V½rðtÞ� − rðtÞ ·∇V½rðtÞ�

�
: ð3Þ

The preexponential factor depends on the Jacobian fields
∂pðtÞ=∂p0, ∂rðtÞ=∂p0 [38,39]. These are calculated by
integration of the Jacobi initial-value problem [38,53]. The
Jacobian J is calculated as

JðtÞ ¼ det

�∂pðtÞ
∂p0

�
: ð4Þ

The Maslov index ν may be viewed as a time-dependent
function νðtÞwith νðt0Þ ¼ 0 that can only change at times T
with vanishing Jacobian JðTÞ ¼ 0 (focal points). At these
points T, there are m linearly independent zero modes dðiÞ
of ∂pðTÞ=∂p0. Infinitesimal changes of the initial momenta
p0 → p0 þ ϵdðiÞ in these directions dðiÞ do not change the
momentum pðTÞ in first order of ϵ. The corresponding
changes δrðiÞ of the position are

δrðiÞ ¼ ϵ
X
j

∂rðTÞ
∂p0

j
dðiÞj : ð5Þ

The jump of the Maslov index across focal points is

ΔνðTÞ ¼ m − 1þ sgn detðgÞ; ð6Þ

where the matrix elements of the m ×m matrix g are given
by gi;j ¼ δrðiÞ · Hesser;rðHÞδrðjÞ with the Hessian matrix
Hesser;rðHÞ of the Hamiltonian H with respect to positions
r [39]. According to the Morse theorem [54], in position
representation Δν is equal to the multiplicity m. In mixed
representation used here, this is not generally true.
However, if Hesser;rðHÞ is positive definite, Eq. (6) reduces
to the Morse theorem.
In order to solve the inversion problem, a Monte Carlo

algorithm is used to sample the initial momenta p0. The
corresponding final momenta p are binned in cells in
momentum space. For a large number nk of trajectories per
bin, the solutions in a single bin form accumulations in the
space of initial momenta which may be identified by means

of clustering algorithms [55]. Considering vanishing bin
sizes, the area covered by the clusters goes to zero and their
locations are the solutions of the inversion problem for a
final momentum k. This method enables us to determine all
possible solutions in a systematic manner, which is a
difficult task in other approaches to solving the inversion
problem [32]. The area covered by the clusters is propor-
tional to 1=jJj, so that the shooting methods [16,30,31]
imply a wrong weighting of trajectories. Solving the
inversion problem allows us to determine the correct weight
1=

ffiffiffiffiffiffijJjp
in Eq. (1).

The PMDs calculated with the semiclassical model for a
Coulomb potential −1=r are shown in Figs. 1(c) and 1(d).
Our model reproduces the TDSE distributions perfectly as
the Jacobian fields depend on the dimension. Using the
symmetry in linearly polarized fields, a relation between
the Jacobian J3D of the 3D system and the Jacobian J2D of
the corresponding 2D system is obtained,

jJ3Dj ¼
p⊥
p0⊥

jJ2Dj with p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
y þ p2

z

q
: ð7Þ

This 2D-to-3D correction weight has already been used in
Ref. [31]. For direct nonscattered trajectories with
p⊥ ≈ p0⊥, the Jacobians in both dimensionalities are nearly
the same. In contrast, rescattering trajectories with large
scattering angles correspond to small initial perpendicular
velocity p0⊥ ≪ p⊥ such that their Jacobian is enhanced, and
hence, their weighting reduced in 3D compared to 2D.
Physically, this reflects the increased recollision probability
in 2D compared to 3D. Close to the polarization axis, where
p⊥ ≈ 0, the distributions in 3D are greatly enhanced due to
Coulomb focusing with p0⊥ ≫ p⊥ [26,35]. Hence, the
difference in the Jacobian J explains the higher emission
strength of electrons with large p⊥ in 2D compared to 3D;
see also the different scales of the 1D slices shown in
Figs. 2(a)–2(d) and the different modulation depth of the
holographic fringes. The longitudinal momentum distribu-
tions and especially the positions of intracycle interferences
are also well reproduced by the model (not shown).
In 3D, scattered electron wave packets may pass through

additional focal points due to Coulomb focusing compared
to 2D. Most intuitively, this can be understood in linearly
polarized fields. Here, the wave packet is focused (in
position space) whenever it crosses the polarization axis,
because the rotational symmetry dictates that in such
points, all trajectories with the same magnitude of their
initial perpendicular velocity and the same release time t0
are mapped to r⊥ ¼ 0. The situation is schematically
illustrated in Fig. 3(a). Hence, this quantum-mechanical
system is comparable to an optical cylindrical lens creating
a line focus with a π=2 phase shift [56]. We expect another
analogy to optics when the semiclassical model is applied
to structured vortex electron wave packets which are
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formed by strong-field ionization of current-carrying orbi-
tals [57,58].
The Gouy phase anomaly arises from the different

Maslov indices in 2D and 3D: For potentials Vðx; r⊥Þ
with a minimum at r⊥ ¼ 0 and arbitrary trajectories, it
follows from Eq. (6) that the indices are related by

ν3D ¼ ν2D þ δν; ð8Þ

where δν is the number of zero crossings of p⊥ðTÞ along
the trajectory. The holographic pattern can be understood as

interference of a nonscattered reference wave and a
scattered signal wave [16,24]. For final momenta with py ¼
0 and pz > 0, the reference trajectory has a perpendicular
initial velocity p0

z > 0 and it is only weakly perturbed by
the potential. Hence, its Maslov phase is 0. In contrast, the
signal trajectory starts with initial velocity p0

z < 0, and it is
strongly deflected by the potential to its final momentum
pz > 0. The calculation shows that the Maslov index in 2D
is still 0. However, since in 3D an additional axial focal
point is crossed, the Maslov index jumps by 1; see Fig. 3(a).
This phase shift affects the positions of minima and
maxima for a broad range of wavelengths; see the 1D
slices through the holographic “fingers” in Fig. 2.
Holography is also present for non-cylindrically-sym-

metric laser fields such as bicircular fields consisting of two
counterrotating circularly polarized fields with frequencies
ω and 2ω [59–61]. Here, in analogy to linear polarization,
we find that the central fringe is strongly enhanced, and
interference minima are correctly predicted only if Gouy’s
phase anomaly is taken into account; see Fig. 4. As in linear
polarization, these findings are caused by Coulomb focusing
of the scattering trajectories with a sign change of their
Jacobian. Hence, Coulomb focusing and Gouy phase
shifts are not special to (approximately) cylindrically sym-
metric systems, but rather a general property of scattering
trajectories.
There are observable nonvanishing Maslov phases

already in 2D. As these phases result from passing through
other types of caustics, they have to be calculated numeri-
cally using Eq. (6). One example concerns the nearly
circular ring structures at high energies arising from
interference of short and long rescattering trajectories

(a) (b)

FIG. 3. (a) Photoelectron holography: Interference between the
nonscattered trajectory (blue line) and scattered trajectory (red
line). Because of the rotational symmetry in 3D, a one-dimen-
sional manifold of trajectories with the same initial perpendicular
momentum p0⊥ (indicated as surface) is focused on the polari-
zation axis resulting in a phase shift of π=2. (b) High-order above-
threshold ionization: Interference between long (red solid line)
and short (violet dashed-dotted line) rescattering trajectories. The
short trajectory passes one focal point (black point) such that the
Maslov index ν ¼ þ1, whereas the long trajectory passes two
focal points (black points) resulting in Maslov index ν ¼ 0.
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from numerical solution of the TDSE. The lines mark the
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[44,45]. The long trajectory finally reaches ν2D ¼ 0, after
passing two focal points in 2D: At one point the Maslov
index is increased by þ1 and at the other it changes by −1.
In contrast, the short trajectory only crosses a single focal
point in 2D resulting in ν2D ¼ þ1; compare Fig. 3(b) for an
illustration. The resulting phase difference π=2 is essential
to reproduce the correct positions of the circular ring
structures; see the 1D slices in Figs. 2(c) and 2(d). In
quantum-orbit models based on the SFA [44,45], this
additional phase is automatically included by the
Hessian matrix element in the prefactor of the SPA [62].
To conclude, we have shown that Gouy’s phase anomaly

in electron waves plays a central role in the formation of
interference structures in PMDs from strong-field ioniza-
tion. Coulomb focusing leads to the appearance of focal
points for rescattering electrons that are absent in 2D, so
that the holographic interference fringes are shifted and the
spectral weight is modified. Our quantitative interpretation
of the PMDs from atoms by means of a powerful semi-
classical model forms the foundation for the future analysis
of more complex system with nontrivially polarized fields
[60,61,63] or more complex targets such as molecules
[22,23,58,64,65]. For the full agreement of our model with
ab initio TDSE results, the inclusion of preexponential
factors is crucial. We have accomplished this task by using
an efficient clustering method for solving the inversion
problem and have thus shown an alternative approach
to resolve one of the problems in the applicability of the
Van Vleck propagator. This idea can be transferred to
other semiclassically treated problems, e.g., in the context
of molecular spectroscopy [53,66,67] or interacting
bosons [68], with the advantage of a clearer view on
physical processes compared to previously used initial-
value representations.
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