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Abstract. We verify the theory of nonadiabatic ionization of degenerate valence

p± orbitals in strong circularly polarized laser fields by solving numerically the

two-dimensional time-dependent Schrödinger equation for an effective one-electron

potential of neon. The numerically calculated ionization ratios of the p− and p+
orbitals agree well with the theoretical results, i.e. the counter-rotating electron tunnels

preferably. However, for strong laser pulses and low laser frequencies, the adiabatic

laser-dressed orbitals play an important role. In a Floquet treatment of a three-level

model we find that in this regime the ionization ratio of initial p− and p+ orbitals

depends crucially on the orbital energy order of valence s and p± orbitals. We also

show that the emission angles of valence p− and p+ electrons are different and should

be observable in attoclock experiments.
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1. Introduction

Ionization in strong infrared (IR) laser fields is one of the fundemental non-linear

processes in attosecond physics of atoms, molecules and nanostructures [1]. It can be

controlled by varying the intensity, frequency, carrier-envelope phase and polarization

of a few-cycle strong laser pulse [2]. In the case of linear polarization, the electron

can travel back to the parent ion, leading to additional physical phenomena such as

high harmonic generation [3, 4], non-sequential double ionization [5] and photoelectron

scattering [6,7]. These recollision phenomena are absent in circular polarization, because

the photoelectron cannot travel back to the parent ion. Assuming that there is no

resonance-enhanced multiphoton ionization (REMPI) [8], the direct ionization is the

only possible flavour of ionization in strong circularly polarized laser fields. The
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experimental availability of femtosecond IR circularly polarized laser pulses and the

existing theories of tunnel ionization in strong laser fields give us opportunities to

compare experimental and theoretical results directly. Examples are the experimental

and theoretical results of lateral widths of the electron momentum distribution [9–12]

and the ratios of the ionization rates of valence p± orbitals of noble gas atoms [13–16].

Here the plus/minus sign denotes the magnetic (azimuthal) quantum number m.

Attoclock experiments using near-circularly polarized pulses measure the offset angles

of the emitted photoelectron at the detector [17–20]. It is one of the hottest topics in

attosecond physics at the present day since it is connected to the determination of the

time delay of direct ionization with attosecond resolution. For a very recent theoretical

treatment including Coulomb effects see Refs. [21, 22].

The theory of nonadiabatic tunnel ionization of atoms in strong laser fields, denoted

as PPT theory, was established in the late 1960s [23, 24], see also Ref. [26]. This

theory for short-range potentials, however, reported only the formulas for ionization

of arbitrary atomic orbitals in linearly polarized laser fields as well as s orbitals in

circularly or elliptically polarized laser fields. Recently, this theory has been extended

to nonadiabatic ionization of degenerate p0 and p± orbitals in circularly polarized laser

fields [13, 14], see also Refs. [27, 28], with interesting features such as the wide-ranging

controllability of spin polarization of the photoelectron [29] and of the rotating hole

dynamics in the remaining ion [30]. Coulomb effects in nonadiabatic ionization by

circularly polarized laser fields have been investigated theoretically in full detail, see

Refs. [21, 22]. It has been predicted that counter-rotating electrons that rotate against

the sense of the circularly polarized field undergoes tunnel ionization easier than co-

rotating electrons. In particular, for right circular polarization, the ionization rate of

the p− orbital is always larger than the one of the p+ orbital [13, 14]. In other words,

the ionization ratio between p− and p+ orbitals is always above 1. In the low-frequency

limit both ionization rates become equal. This prediction has recently been confirmed

in an experiment on sequential double ionization of argon induced by two time-delayed

strong circularly polarized laser pulses with either the same or opposite helicities [15,16].

In this work, we verify the prediction of PPT theory by numerical solution of the

time-dependent Schrödinger equation. Since the circularly polarized laser field breaks

the cylindrical symmetry and the numerical calculation in three dimensions is time-

consuming, we perform two-dimensional numerical simulations for the ionization of the

doubly-degenerate valence p± orbitals of a model neon atom, see section 2. We compare

numerical results for ionization ratios with theoretical PPT results and we investigate the

ionization dynamics in detail, such as population dynamics, snapshots of the electron

probability densities and emission angles, see section 3. By further analysis, we find

that for strong laser pulses and low laser frequencies, there are discrepancies between

numerical and theoretical results, arising from adiabatic laser-dressed p orbitals. In a

3-level model based on Floquet theory [31, 32] we find in section 4 that the ionization

ratios between initial p− and p+ orbitals can be smaller than 1, in agreement with our

numerical simulations. Section 5 concludes this work. Atomic units are used throughout
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unless otherwise stated.

2. Numerical solution of the 2D time-dependent Schrödinger equation

In this work, we perform simulations of the two-dimensional time-dependent Schrödinger

equation (2D-TDSE) for the ionization dynamics of a valence p electron of a model

neon atom in a strong circularly polarized laser pulse. Using atomic units, the 2D-

TDSE for the one-electron wavefunction ψ(r, t) = ψ(x, y, t) in the semiclassical dipole

approximation is given by

i
∂

∂t
ψ(r, t) = Ĥ(t)ψ(r, t) =

[
−∇

2

2
+ Veff(r) + r · E±(t)

]
ψ(r, t). (1)

Observables obtained from this theory are gauge-invariant. The effective atomic 2D

potential Veff(r) is chosen as

Veff(r) = − Zeff(r)√
r2 + α

, (2)

where we use a position-dependent core charge Zeff(r) = 1 + 9 exp(−r2) to account for

the screening of the nuclear charge by the inner electrons. It is similar to the empirical

3D potential in Ref. [33], but due to lower dimensionality the exponential function

exp(−r2) and the soft-core parameter α = 2.88172 a.u. are used to obtain the correct

value for the energy of the valence 2p orbital which matches the negative first ionization

potential of neon, E2p = −Ip = −0.793 a.u. [34]. The numerically calculated energies of

the 1s and 2s orbitals are E1s = −2.952 a.u. and E2s = −0.217 a.u., respectively. Our

model does not reproduce the correct energy order of the s and p orbitals. In the real

3D neon atom, we have E2s < E2p. We will discuss the influence of the orbital energy

order on the laser-dressed orbitals in section 4.

The ionization dynamics is induced by a strong right (+) or left (−) circularly

polarized laser pulse. The corresponding time-dependent electric field E±(t) is defined

via vector potential A±(t) as

E±(t) = − d

dt
A±(t) (3)

with limt→±∞ A±(t) = 0, in order to satisfy the condition of the far-field approximation

of Maxwell’s equation [35,36]∫ ∞
−∞

E±(t) dt = 0. (4)

In this work, we define the circularly polarized vector potential A±(t) as

A±(t) = −E
ω
s(t) [sin(ωt) ex ∓ cos(ωt) ey] (5)

with the electric field amplitude E , laser frequency ω and trigonometric pulse envelope

[37]

s(t) =

 sin2

(
ωt

2n

)
for t ∈

[
0, 2πn

ω

]
0 for t /∈

[
0, 2πn

ω

] , (6)
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where n is the number of laser cycles. Our definition of left and right circular polarization

assumes the point of view of the source for a laser field propagating along the positive

z-direction [38, 39]. We note that the integral of A±(t) over the pulse duration is

zero for integers n ≥ 2. In our 2D-TDSE simulations, we use a 3-cycle (n = 3)

right (+) circularly polarized laser pulse with four different electric field amplitudes

E = 0.06 a.u., 0.09 a.u., 0.12 a.u., 0.15 a.u., corresponding to maximum laser intensities

Imax = 2.53×1014 Wcm−2, 5.69×1014 Wcm−2, 10.11×1014 Wcm−2, 15.79×1014 Wcm−2

and five different laser frequencies ω = 0.028477 a.u., 0.037969 a.u., 0.056954 a.u.,

0.075939 a.u., 0.113908 a.u., corresponding to laser wavelengths λ = 2πc/ω = 1600 nm,

1200 nm, 800 nm, 600 nm, 400 nm.

The time-dependent wavefunction ψ(r, t) is propagated using the second-order split-

operator method [40,41] on a Cartesian grid. This spatial grid has 2048×2048 = 4194304

grid points with the same step sizes for x- and y-directions, ∆x = ∆y = 0.1 a.u. The grid

ranges from −102.35 a.u. to 102.35 a.u. in each direction. The real time step is chosen

as ∆t = (∆x)2/2 = 0.005 a.u. ≈ 0.121 as. The initial and final times of the real-time

propagation are ti = 0 a.u. and tf = 1000 a.u ≈ 24.2 fs, respectively. The final time

tf is longer than the length of a 3-cycle pulse even for λ = 1600 nm. The stationary

normalized wavefunctions φ(n,m)(r) with principal and azimuthal quantum mumbers

(n,m) for 1s (0, 0), 2s (1, 0) and 2p± (1,±1) orbitals are obtained by imaginary-time

propagation and orthogonalization under symmetry conditions corresponding to m.

They are used as initial wavefunctions of the real-time propagation. In this work, we

calculate the 2D ionization dynamics numerically for 4 × 5 = 20 different laser pulses

starting either from the 2p+ orbital φ2p+(r) or from the 2p− orbital φ2p−(r).

To avoid unphysical reflections at the grid boundaries and to calculate ionization

yields, we use an imaginary absorbing potential defined as

Vabs(r) =

{
−ia(r − rabs)

2 for r > rabs

0 for r ≤ rabs

, (7)

with a = 0.1 and rabs = 80 a.u. Without absorbing potential, the norm of the time-

dependent wavefunction is conserved, i.e. 〈ψ(r, t)|ψ(r, t)〉 = 1. With absorbing potential,

the norm of the wavefunction for t > 0 is always less than 1 and the time-dependent

ionization yield can be calculated numerically as

Y(n,m)(t) = 1− 〈ψ(n,m)(r, t)|ψ(n,m)(r, t)〉, (8)

where the index (n,m) indicates the initialization of the wavefunction as ψ(n,m)(r, 0) =

φ(n,m)(r). Furthermore, we also calculate the time-dependent depletion of the initial

wavefunction as

D(n,m)(t) = 1− |〈ψ(n,m)(r, t)|φ(n,m)(r)〉|2. (9)

To compare the ionization yields and depletions at the final time tf for two initial

wavefunctions φ2p±(r), we calculate the ratios

RY =
Y2p−(tf )

Y2p+(tf )
(10)
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and

RD =
D2p−(tf )

D2p+(tf )
. (11)

Then, we compare these ratios with the ratios of the ionization rates w2p± using the

simple formulas derived in Refs. [13, 14], that is the extension of the PPT theory of

nonadiabatic ionization [23,24], i.e.

Rw =
w2p−

w2p+

. (12)

It can be shown, that the PPT ratios Rw using the simple formulas from Refs. [13, 14]

are equal for 2D and 3D. We note that all ratios depend on the laser parameters E and

ω of the right circularly polarized laser pulse. The PPT ratios for cw laser fields are

gauge-invariant [14]. We evaluate these PPT ratios using the peak field strength of our

laser pulses. The PPT ratio Rw depends only on the Keldysh parameter γ defined as

γ =
ω

E
√

2Ip, (13)

that discriminates between adiabatic tunneling (γ � 1), nonadiabatic tunneling (γ ∼ 1)

and multiphoton ionization (γ � 1). The analytical expression of the PPT ratio Rw

is [13, 14]

Rw =

(√
ζ2

0 + γ2 + ζ0

√
1 + γ2√

ζ2
0 + γ2 − ζ0

√
1 + γ2

)2

, (14)

where ζ0(γ) > 0 is the solution of the transcendental equation

artanh

√
ζ2

0 + γ2

1 + γ2
=

1

1− ζ0

√
ζ2

0 + γ2

1 + γ2
. (15)

3. Results and discussion

The ratios RY (10) and RD (11) obtained by 2D-TDSE numerical calculations for n = 3

and the PPT ratios Rw (12) are listed in table 1 and also shown in figure 1. This table

and figure show that for not too strong fields the numerically calculated ratios RY ≈ RD

agree well with the PPT ratios Rw. The PPT ratios for short-range potentials are always

larger than 1, i.e. in a strong right circularly polarized laser field the tunnel ionization

of the valence 2p− orbital of neon is preferred compared to the tunnel ionization of

the valence 2p+ orbital. However, there are some deviations between numerical and

theoretical results. Below, we will discuss the origins of these deviations. We have

also performed numerical calculations for a 6-cycle sin2 pulse with E = 0.15 a.u. and

λ = 1600 nm and for a Gaussian pulse with the same full width of half maximum of the

intensity envelope. The results RY ≈ RD ≈ 0.782 are almost the same for both pulse

shapes. The results are similar to those for a 3-cycle laser pulse RY ≈ RD ≈ 0.748,

see table 1. The weak dependence on the pulse duration is also shown in the recent

work [25].
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Table 1. Numerically calculated ratios of the ionization yields RY , equation (10) and

depletions RD, equation (11), compared with PPT ratios of the ionization rates Rw,

equation (12), for the 2p± orbitals of the model neon atom. Results are shown for

various laser parameters E and λ = 2πc/ω of the right circularly polarized laser pulse.

The Keldysh parameter γ, equation (13), is also shown for each choice of parameters.

E (a.u.) λ (nm) γ RY RD Rw

0.06 1600 0.598 2.076 2.051 2.140

1200 0.797 2.708 2.658 2.671

800 1.195 4.190 4.073 3.918

600 1.594 5.888 5.799 5.337

400 2.391 9.352 9.357 8.415

0.09 1600 0.398 1.383 1.383 1.682

1200 0.531 1.731 1.730 1.979

800 0.797 2.478 2.478 2.671

600 1.063 3.278 3.282 3.479

400 1.594 4.818 4.823 5.337

0.12 1600 0.299 0.969 0.969 1.482

1200 0.398 1.194 1.194 1.682

800 0.598 1.627 1.627 2.140

600 0.797 2.051 2.051 2.671

400 1.195 2.821 2.821 3.918

0.15 1600 0.239 0.748 0.748 1.372

1200 0.319 0.892 0.892 1.521

800 0.478 1.159 1.159 1.856

600 0.638 1.410 1.410 2.241

400 0.956 1.858 1.858 3.144

For large Keldysh parameters γ & 1, the Coulomb potential plays an important

role. Due to the low mean electronic kinetic energy for γ & 1 in a circularly polarized

laser field, namely E2/(2ω2) = Ip/γ
2 [14], the slow photoelectron can interact with

the attractive long-range potential for a longer time. Including Coulomb effects in

the theoretical treatment [21] shows that for γ & 1 the ratios of the ionization rates

with Coulomb potential are smaller than the ones without long-range potential. For

strong fields, e.g. E ≥ 0.09 a.u., they could be comparable with numerically calculated

ratios, see figure 5 of Ref. [21]. However, for less strong fields, e.g. E = 0.06 a.u.,

the numerically calculated ratios are significantly larger than the PPT ratios. This is

astonishing, because it has not been predicted in theory yet.

For very small Keldysh parameters γ � 1, there are also strong deviations between

the numerically calculated ratios RY ≈ RD and the PPT ratios Rw. The numerically

calculated ratios can be smaller than 1. That is in contrast to the prediction by the

PPT theory [13, 14]. Numerically for γ � 1 the tunnel ionization of the valence 2p+

(rather than 2p−) orbital in a right circularly polarized laser field is preferred. This

inversion is due to the laser-dressed 2p± orbitals, which are not included in the PPT
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Figure 1. Numerically calculated ratios RY of the ionization yields, equation (10),

(colour solid) compared with PPT ratios Rw of the ionization rates, equation (12),

(black dashed without symbols) for the 2p± orbitals of the model neon atom as a

function of the Keldysh parameter γ, equation (13), for field amplitudes E = 0.06 a.u.

(violet triangles), 0.09 a.u. (blue squares), 0.12 a.u. (green diamonds) and 0.15 a.u. (red

circles) of the right circularly polarized laser pulse. The symbols from left to right

correspond to laser wavelengths λ = 1600 nm, 1200 nm, 800 nm, 600 nm and 400 nm.

The ratios RY and RD, equation (11), are almost indistinguishable on the scale of the

graph. Therefore, only RY is sohwn.

theory and become important for high field amplitudes E and low laser frequencies ω.

We will discuss this effect in detail in section 4.

To obtain more insight into the ionization dynamics of the degenerate 2p± orbitals

in a 3-cycle right circularly polarized laser pulse, we choose the example E = 0.09 a.u.

and λ = 800 nm. The corresponding numerical results for the time-dependent orbital

populations, norm squares, depletions and ionization yields are shown in figure 2. The

2p+ or 2p− orbital at the initial time t = ti = 0 a.u. is depleted during the tunnel

ionization process, while the laser-induced population of the initially empty 2p− or 2p+

orbital remains negligible. The populations of 1s (not shown in figure 2) and 2s orbitals

are also very small. The fact that the 2p+/2p− population and the norm square of

the wavefunction at the final time are almost identical reveals that the populations of

other excited orbitals at the final time are also negligible. It means that the depletion

of the initial wavefunction and the ionization yield at the final time are similar, i.e.

D2p+(tf ) ≈ Y2p+(tf ) and D2p−(tf ) ≈ Y2p−(tf ), leading to similar ratios RY ≈ RD, see

also table 1 and figure 1. Importantly, figure 2 shows that the dynamics starting from

the valence 2p+ and 2p− orbitals are different. In particular, D2p−(tf ) > D2p+(tf ) and

Y2p−(tf ) > Y2p+(tf ) mean that the electron from the 2p− orbital is released easier than

the electron from the 2p+ orbital. This clearly confirms the prediction of the PPT theory

in Ref. [13,14] and shows that RY ≈ RD ≈ Rw > 1, see table 1.

In the presence of the right circularly polarized laser pulse, electrons from the

valence 2p+ or 2p− orbital of neon can tunnel through the barrier, if the electric field

is strong enough. Tunnel ionization is most probable at time tmax = 3π/ω where the
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Figure 2. Ionization dynamics of neon starting from the valence 2p+ (a,b)

and 2p− (c,d) orbital for the field amplitude E = 0.09 a.u. and laser wavelength

λ = 800 nm, corresponding to the Keldysh parameter γ = 0.797. Shown are the

populations |〈ψ(r, t)|φ2p+
(r)〉|2 (a,d) (red solid), |〈ψ(r, t)|φ2p−(r)〉|2 (b,c) (green solid)

and |〈ψ(r, t)|φ2s(r)〉|2 (b,d) (blue dotted) of the 2p+, 2p− and 2s orbitals, the norm

square of the wavefunction 〈ψ(r, t)|ψ(r, t)〉 (a,c) (orange dash-dotted), the ionization

yields Y2p+
(t) (b) and Y2p−(t) (d) (black dash-dotted) and the depletions of the initial

wavefunction D2p+(t) (b) and D2p−(t) (d) (black dashed).

electric field has its maximum value and the corresponding field vector points along

the negative x-direction. Snapshots of the numerically calculated electron probability

density |ψ(r, tmax)|2 for E = 0.09 a.u. are shown in figure 3. This figure clearly shows

that the ionization probabilities for 2p± orbitals are different and the ionization from

the 2p− orbital is preferred. The numerically calculated ratios RY and RD agree well

with the PPT ratios Rw for different laser wavelengths, see table 1 for E = 0.09 a.u.

They are larger than 1, i.e. the bound state with the counter-rotating electron is ionized

easier.

Figure 3 also shows the radius-dependent positions (xmax(r), ymax(r)) corresponding

to the angle where the electron probability density at t = tmax is maximal. These

different curves for initial 2p± orbitals mean that the emission angles ϕ2p± =

arctan(y2p±
max(rexit)/x

2p±
max(rexit)) at the miniumum distance to the tunnel exit rexit =

7.38 a.u. are different. They also depend on the field amplitude (cf. figure 5) and

frequency. For fast electric field rotations (small wavelength), the emission angles

deviate strongly from zero. This is in contrast to the semiclassical picture where
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Figure 3. Snapshots of the electron probability density |ψ(r, tmax)|2 in a.u. at

time t = tmax = 3π/ω where the right circularly polarized electric field has the

maximum and the corresponding field vector points along the negative x-direction

(orange arrows), for the field amplitude E = 0.09 a.u., different laser wavelengths

λ = 1600 nm (a,d), 800 nm (b,e), 400 nm (c,f) and different initial orbitals 2p+ (a–

c) and 2p− (d–f). The density for radii larger than the minimum distance to the

tunnel exit rexit = 7.38 a.u. is scaled by the factor 3000 to better display both the

bound-state inner region and the ionization part in the outer region. The red (2p+)

and green (2p−) curves correspond to the radius-dependent angle where the electron

probability density is maximal. The coordinates x and y are in atomic units.
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Figure 4. (a) Electron probability density |ψ(r, tmax)|2 at the minimum distance to

the tunnel exit, r = rexit = 7.38 a.u., versus angle ϕ = arctan(y/x) for right circular

polarization, field amplitude E = 0.09 a.u., laser wavelength λ = 800 nm and different

initial orbitals 2p+ (red) and 2p− (green) with corresponding maxima at emission

angles ϕ2p− < ϕ2p+
< 0. (b) Emission angles ϕ2p±(r) versus radius r for 2p+ (red)

and 2p− (green) orbitals and the difference ∆ϕ(r) = ϕ2p+
(r)−ϕ2p−(r) (black dashed).

The radius r = rexit is shown as vertical line.
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the electron tunnels exactly against the electric field vector, i.e. in the positive x-

direction, corresponding to zero emission angle. Numerical calculations in figure 3

show that the emission angles are always smaller than 0 for right circular polarization

(ϕright < 0). Although negative emission angles for right circular polarization due to

the Coulomb potential (ϕCoulomb < 0) have recently been predicted theroetically in

Ref. [21], this theory does not predict the different emission angles ϕ2p± for 2p± orbitals.

Detailed analysis of the electron probability density |ψ(r, tmax)|2 at r = rexit versus angle

ϕ = arctan(y/x) (see figure 4) shows that the emission angle for 2p+ orbital is closer to

zero than for 2p− orbital (ϕ2p− < ϕ2p+ < 0). This is plausible because the azimuthal

momentum component of the 2p+/2p− orbital is positive/negative (cf. Ref. [42]), adding

to or subtracting from the mean emission angle ϕ̄ = (ϕ2p+ + ϕ2p−)/2 < 0, respectively.

We expect that this non-zero mean emission angle ϕ̄ < 0 for right circular polarization

is comparable with ϕCoulomb < 0 [21]. The non-zero emission angles for degenerate

E± states in a linearly polarized laser field have already been observed in numerical

calculations [42]. The E± states are eigenstates of the angular momentum component

L̂z, similar to P± states. Due to the non-zero and opposite angular momenta of E±
states, one finds ϕE+ > 0 and ϕE− = −ϕE+ < 0 for linear polarization [42]. Figure 4 also

shows the emission angles ϕ2p±(r) = arctan(y2p±
max(r)/x2p±

max(r)) at t = tmax as a function of

r. It clearly shows that the difference of emission angles ∆ϕ(r) = ϕ2p+(r)− ϕ2p−(r) for

r ≥ rexit depends only weakly on r and has a robust value of about 6◦−10◦. Furthermore,

we expect that this difference does not change significantly with time, even after the end

of the laser pulse. Therefore, we believe that different emission angles for degenerate

valence p± orbitals of the atomic prepared state P± (e.g. ground state of a halogen

atom) can be observed in attoclock experiments, see Refs. [17–20]. Recently, it has

been theoretically predicted for one-photon ionization in a circularly polarized laser

field that the time delay is sensitive to the emission angle of the photoelectron and that

there is a pronounced difference between co- and counter-rotating electrons from 2p±
orbitals of the excited Li atom [43].

4. Laser-dressed orbitals

As already mentioned in the previous section, the numerically calculated ratios of

the ionization yields RY and depletions RD for high field amplitudes E and low laser

frequencies ω, corresponding to low Keldysh parameters γ =
√

2Ip ω/E , can be smaller

than 1, see table 1 and figure 5. This cannot be reproduced by PPT theory for

circular polarization [13, 14], because laser-dressed 2p± orbitals are not considered in

this theory. For the strong field E = 0.15 a.u., the strongly laser-dressed 2p± orbitals

are clearly visible in the inner region of the snapshots of the electron probability density

|ψ(r, tmax)|2, see figure 5, particularly for long wavelength. For right circular polarization

and orbital energy order E2p < E2s as well as ω < E2s − E2p used in the 2D numerical

calculations (see below), the initial 2p+ orbital is modified to the rotating 2px-like orbital

denoted as 2p‖ orbital since this orbital is always aligned with the rotating electric
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Figure 5. Same as for figure 3, but for stronger field amplitude E = 0.15 a.u. to bring

out the laser-dressed 2p± orbitals. The density for radii larger than the minimum

distance to the tunnel exit, rexit = 3.81 a.u., is scaled by the factor 30.

field vector. In contrast, the initial 2p− orbital is modified to the rotating 2py-like

orbital denoted as 2p⊥ orbital that is always aligned perpendicular to the electric field

vector. The ionization of the 2p‖ orbital is preferred since in the semiclassical picture

the electron tunnels preferably against the electric field vector and the ionization of

the 2p⊥ orbital is suppressed. The ratios of the ionization yields Y2p⊥(tf )/Y2p‖(tf )

and depletions D2p⊥(tf )/D2p‖(tf ) are therefore smaller than 1. This implies that

RY = Y2p−(tf )/Y2p+(tf ) ≈ RD = D2p−(tf )/D2p+(tf ) < 1. In the low-frequency limit

ω → 0 (corresponding to γ → 0), PPT theory for laser fields without envelope predicts

that the ratio Rw is exactly equal 1, see Refs. [13, 14]. In the simulation, in contrast,

there is a slow adiabatic change of the initial 2p± orbitals to laser-dressed 2p‖ and 2p⊥
orbitals during the laser pulse. If we wish to account for the laser-dressing in the PPT

theory, we have to use non-degenerate 2p‖ and 2p⊥ orbitals for initialization instead of

degenerate 2p± orbitals.

We will investigate how the laser-dressed orbitals depend on the electric field

amplitude, laser frequency, sense of circular polarization, orbital energies and orbital

energy order. The shifts of the energy levels of atoms and atomic ions by dynamic Stark

effects can be calculated theoretically based on the Floquet theory [31,32], see Ref. [44]

for alternating laser fields and Refs. [45–47] for circularly polarized and arbitrarily strong

laser fields using matrix diagonalization. However, these references do not discuss the

shape of laser-dressed orbitals. Here, we apply the Floquet theory to one electron in a

three-level model in a circularly polarized laser field without envelope to describe the

laser-dressed orbitals 2p‖ and 2p⊥ qualitatively. We are aware that Floquet theories can

be problematic for short pulses [48]. However, in this work, we would like to keep the

theory as simple as possible. Since the TDSE results for a 3-cycle laser pulse and for a
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6-cycle laser pulse are similar (see above), we expect that the adiabatic Floquet theory is

applicable. We calculate not only energy shifts but also the Floquet states. The field-free

energy eigenstates of our three-level model are the 2s and 2p± orbitals. We assume that

the choice of only these three orbitals is sufficient for qualitative description of orbital

alignment and that the contributions of other field-free orbitals to the field-induced 2p‖
and 2p⊥ orbitals are not important. Multilevel Floquet theory with numerical matrix

diagonalization could be used, but it is outside the scope of this work as we do not aim

at quantitative agreement with the TDSE results.

According to the Floquet theory, we consider the periodic Hamiltonian

ĤF (t) = ĤF (t+ nT ) = Ĥ0 + r · E±(t) (n ∈ Z) (16)

where Ĥ0 = −∇2/2 + Veff(r) is the time-independent Hamiltonian and T = 2π/ω is the

laser period. To solve the corresponding TDSE

i
∂

∂t
|ψF (t)〉 = ĤF (t)|ψF (t)〉 (17)

for the one-electron wavefunction ψF (r, t), we use the ansatz

|ψF (t)〉 = |φF (t)〉e−iEF t (18)

where EF is the quasienergy and φF (r, t) = φF (r, t + nT ) is the periodic Floquet

wavefunction. Inserting equation (18) into equation (17) yields(
Ĥ0 − EF − i

∂

∂t
+ r · E±(t)

)
|φF (t)〉 = 0. (19)

As an ansatz for the Floquet wavefunction φF (r, t) we use a superposition of the field-free

2s and 2p± orbitals, i.e.

|φF (t)〉 = a|φ2s〉+ b+e
∓iωt|φ2p+〉+ b−e

±iωt|φ2p−〉. (20)

It satisfies the periodicity condition φF (r, t) = φF (r, t + nT ). The different signs ∓
and ± in equation (20) correspond to the sense of the circular polarization of the laser

field E±(t). The choice of the exponential factors in equation (20) is justified because

for right circular polarization one photon is necessary for the transition s → p+. Thus

there is an additional factor e−iωt in the 2p+ term compared to the 2s term. Likewise,

one photon is necessary for the transition p− → s, thus there is an additional factor

e+iωt in the 2p− term. Applying 〈φ2s|, 〈φ2p+| and 〈φ2p− | to equation (19) and using

Ĥ0|2s〉 = E2s|2s〉 and Ĥ0|2p±〉 = E2p|2p±〉 as well as the only one non-vanishing dipole

matrix element D = 〈φ2s|r|φ2p+〉 = 〈φ2s|r|φ2p−〉∗, we find the three equations

(E2s − EF ) a+ D · E±(t)b+e
∓iωt + D∗ · E±(t)b−e

±iωt = 0, (21)

(E2p − EF ∓ ω) b+ + D∗ · E±(t)ae±iωt = 0, (22)

(E2p − EF ± ω) b− + D · E±(t)ae∓iωt = 0. (23)

In our definition of the dipole matrix element, we have omitted the negative charge of

the electron. Using the right (+) or left (−) circularly polarized electric field

E±(t) = E [cos(ωt) ex ± sin(ωt) ey] (24)
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and the dipole matrix element

D =
1√
2

(
〈φ2s|r|φ2px〉+ i〈φ2s|r|φ2py〉

)
= D (ex + i ey) , (25)

where D = 〈φ2s|x|φ2px〉/
√

2 = 〈φ2s|y|φ2py〉/
√

2, we obtain

D · E±(t) = DE [cos(ωt)± i sin(ωt)] = DEe±iωt. (26)

Inserting this equation into equations (21)–(23) yields the system of time-independent

equations in matrix notation E2s − EF DE DE
DE E2p − EF ∓ ω 0

DE 0 E2p − EF ± ω


 a

b+

b−

 = 0. (27)

To obtain non-trivial solutions for the three quasienergies EF and amplitudes a, b±,

the determinant of the matrix in equation (27) is set to zero, leading to a cubic equation

in E ′F , i.e.

(E ′F −∆E)(E ′2F − ω2)− 2(DE)2E ′F = 0, (28)

where E ′F = EF −E2p is the relative quasienergy to the energy of the field-free 2p orbital

and ∆E = E2s−E2p is the energy difference between field-free 2s and 2p± orbitals. We

note that in the zero-field case (E = 0), the relative quasienergies are E ′F = ∆E and

E ′F = ±ω, corresponding to EF = E2s and EF = E2p ± ω. In our case, the non-zero

laser frequency ω is not equal to the energy difference ∆E, i.e. 0 6= ω 6= |∆E|. Then,

the cubic equation (28) has three real distinct solutions for the relative quasienergy E ′F .

We use Cardano’s formula [49] to obtain three (m = 0,±1) relative quasienergies E ′F,m
as

E ′F,m = (−1)m 2
√
Q cos

(
1

3
(θ −mπ)

)
+

∆E

3
, (29)

where

θ = arccos

(
R√
Q3

)
, (30)

R =
∆E

3

(
(DE)2 − ω2 +

(∆E)2

9

)
, (31)

Q =
1

3

(
2(DE)2 + ω2 +

(∆E)2

3

)
. (32)

The corresponding Taylor series up to second order in DE for ∆E > ω > 0 are

E ′F,0 ≈ ∆E +
2∆E(DE)2

(∆E)2 − ω2
, (33)

E ′F,−1 ≈ ω − (DE)2

∆E − ω
, (34)

E ′F,1 ≈ − ω −
(DE)2

∆E + ω
. (35)
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Figure 6. Relative quasienergies E′F,m = EF,m − E2p, equation (29), of the three

laser-dressed orbitals 2s̃ (m = 0, blue dotted), 2p⊥ (m = −1, green solid) and 2p‖
(m = 1, red solid), connecting to the field-free orbitals 2s (m = 0), 2p− (m = −1)

and 2p+ (m = 1), for the laser wavelength λ = 1600 nm, corresponding to the laser

frequency ω = 0.0285 a.u.. This graph assumes the case ∆E > ω > 0 with orbital

energy difference ∆E = E2s−E2p = 0.576 a.u. and dipole strength D = 0.463 a.u. The

energies are plotted versus electric field amplitude E of the right circularly polarized

periodic laser field. The field amplitude E = 0.15 a.u. is shown as vertical black line.

In the zero-field limit (E → 0) and for ∆E > ω > 0, these relative quasieneriges

approach E ′F,0 = ∆E and E ′F,∓1 = ±ω. Therefore, by comparison for right circular

polarization (see equation (27)) E ′F,0 corresponds to the field-free 2s orbital whereas

E ′F,∓1 correspond to the field-free 2p∓ orbitals. Figure 6 shows the relative quasienergies

E ′F,m (m = 0,±1), equation (29), for ∆E > ω > 0 versus electric field amplitude E ,

where the numerically calculated dipole strength D = 0.463 a.u. in our 2D model of

neon atom is used. For other cases ω > ∆E > 0, 0 > ∆E > −ω and 0 > −ω > ∆E,

the meaning of the relative quasienergies E ′F,m at the limit E → 0 are changed, because

m = 0 always corresponds to the state with the highest energy, m = −1 to the state

with the middle energy and m = 1 to the state with the lowest energy, see table 2 for

the results. For right circular polarization and ∆E > ω > 0, these field-free 2s, 2p−
and 2p+ orbitals modify adiabatically to field-dressed 2s̃ (m = 0), 2p⊥ (m = −1) and

2p‖ (m = 1) orbitals (see below) with increasing field amplitude E . There are no energy

crossings between Floquet states. For the cases ω > ∆E > 0, 0 > ∆E > −ω and

0 > −ω > ∆E, the adiabatic modification of the orbitals is different, see below and

table 2.

The real amplitudes am and b±,m of the field-free 2s and 2p± orbitals contributing

to the laser-dressed orbitals for m = 0,±1 and right circular polarization are easily

calculated using equation (27), resulting in

b+,m =
DE

E ′F,m + ω
am, (36)

b−,m =
DE

E ′F,m − ω
am (37)
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Table 2. Relative quasienergies E′F,m = EF,m − E2p, equation (29), in the zero-field

limit (E → 0) (first line of each row) of the right circularly polarized periodic laser

field and the corresponding modifications of field-free orbitals to laser-dressed orbitals

(second line of each row) for the three Floquet states (m = 0,±1) and four different

cases for the orbital energy difference ∆E = E2s − E2p.

m ∆E > ω > 0 ω > ∆E > 0 0 > ∆E > −ω 0 > −ω > ∆E

0 ∆E ω ω ω

2s→ 2s̃ 2p− → 2s̃ 2p− → 2p‖ 2p− → 2p‖

−1 ω ∆E ∆E −ω
2p− → 2p⊥ 2s→ 2p⊥ 2s→ 2p⊥ 2p+ → 2p⊥

1 −ω −ω −ω ∆E

2p+ → 2p‖ 2p+ → 2p‖ 2p+ → 2s̃ 2s→ 2s̃

with normalization condition

a2
m + b2

+,m + b2
−,m = 1, (38)

i.e.

am =

[
1 +

(DE)2

(E ′F,m + ω)2
+

(DE)2

(E ′F,m − ω)2

]−1/2

. (39)

At time t = tmax = 3π/ω, where the electric field vector points along the negative x-

direction, see figure 5, the amplitudes bx,m and by,m of the field-free 2px and 2py orbitals

are calculated as

bx,m =
b+,m + b−,m√

2
, (40)

by,m =
b+,m − b−,m√

2
. (41)

Using equations (20), (40), (41), φ2s(r) = φ2s(r) and φ2p±(r) = φ2p(r)e
±iϕ, the time-

dependent electron probability density of the field-dressed orbitals for right circular

polarization is

|φF,m(r, t)|2 = a2
m|φ2s(r)|2 +

(
b2

+,m + b2
−,m
)
|φ2p(r)|2 (42)

+ 2am(bm,+ + bm,−)φ2s(r)φ2p(r) cos(ωt− ϕ)

+ 2bm,+bm,−|φ2p(r)|2 cos(2(ωt− ϕ))

and for t = tmax = 3π/ω

|φF,m(r, tmax)|2 = a2
m|φ2s(r)|2 +

(
b2

+,m + b2
−,m
)
|φ2p(r)|2 (43)

− 2
√

2 ambx,mφ2s(r)φ2p(r) cosϕ

+ (b2
x,m − b2

y,m)|φ2p(r)|2 cos(2ϕ).

The first two terms of equation (42) are time-independent and do not contribute to

the electron dynamics of the dressed orbital. For am 6= 0, i.e. including the 2s orbital,
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Figure 7. Weights |am|2, see equation (39) (blue dotted), |b−,m|2, see equation (37)

(green solid), and |b+,m|2, see equation (36) (red solid), as well as |bx,m|2, see equation

(40) (orange dashed) and |by,m|2, see equation (41) (violet dashed), of the field-free

2s and 2p± orbitals as well as of the corresponding 2px and 2py orbitals at t = tmax

contributing to the laser-dressed 2p⊥ (a) and 2p‖ (b) orbitals, connecting to the field-

free 2p− and 2p+ orbitals. The laser wavelength is λ = 1600 nm, corresponding to the

laser frequency ω = 0.0285 a.u. This graph assumes the case ∆E > ω > 0 with orbital

energy difference ∆E = E2s−E2p = 0.576 a.u. and dipole strength D = 0.463 a.u. The

weights are plotted versus electric field amplitude E of the right circularly polarized

periodic laser field. The field amplitude E = 0.15 a.u. is shown as vertical black line.

the term proportional to cos(ωt − ϕ) distorts the orbital and this distortion rotates

with the electric field vector. If the relative quasienergy E ′F,m decreases with increasing

field amplitude E , it can be shown that the prefactor ambx,m is negative, leading to the

distortion of the orbital to the positive x-axis at the time t = tmax when the electric

field points along to the negative x-axis. If both bm,+ 6= 0 and bm,− 6= 0, the term

proportional to cos(2(ωt−ϕ)) contributes to the laser-induced modification of the field-

free 2p± orbitals and rotates with the electric field vector. In particular at time t = tmax,

this term is non-zero for bx,m 6= by,m, i.e. for the different populations of the 2px and

2py orbitals. This modified orbital is aligned along the rotating electric field vector if

|bx,m| > |by,m| and perpendicular to the rotating electric field vector if |bx,m| < |by,m|.
These two possibilities correspond to the field-dressed rotating 2p‖ and 2p⊥ orbitals,

respectively. It can be shown analytically, that for the case ∆E > ω > 0 the conditions

|bx,−1| < |by,−1| and |bx,1| > |by,1| are satisfied, therefore the field-free 2p− and 2p+

orbitals are modified adiabatically to the 2p⊥ and 2p‖ orbitals, respectively. Figure 7

confirms this conclusion for the case ∆E > ω > 0 by showing the weights |am|2 and

|b±,m|2 as well as |bx,m|2 and |by,m|2 for a right circularly polarized laser pulse. The

results for the cases ω > ∆E > 0, 0 > ∆E > −ω and 0 > −ω > ∆E are summarized in

table 2.

Therefore, by deep analysis of the three-level Floquet theory, we confirm that

the initial 2p± orbitals for high field amplitudes E and low laser frequencies ω are

strongly modified, see figure 5. In particular, for our 2D model of neon atom, where

∆E = E2s − E2p > ω, the initial 2p− and 2p+ orbitals are modified to laser-dressed
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2p⊥ and 2p‖ orbitals that are perpendicular and parallel to the rotating electric field

vector, respectively. Therefore, the ratios of the ionization yields RY and depletions

RD will be smaller than 1, because the tunnel ionization of the 2p‖ orbital is preferred

over 2p⊥. Figure 1 indicates that in linear extrapolation to the low-frequency limit

ω → 0, smaller electric field amplitudes imply smaller ratios. This is qualitatively

consistent with the low-frequency limit for the ratio of two orthogonally oriented orbitals

ionized by a linearly polarized field [23]. Very recently, these discoveries with respect

to orbital modifications and ratios of ionization rates are also confirmed by numerical

TDSE calculations for the 2D model argon atom [25]. However, in a real 3D noble

gas atom with ∆E = E2s − E2p < −ω, we conjecture that the ionization behaviour is

completely reversed, i.e. the initial 2p− and 2p+ orbitals are modified to laser-dressed

2p‖ and 2p⊥ orbitals, respectively, see table 2. It leads to ratios RY and RD larger than

1, which is in principle in accord with the PPT theory. However, in the limit ω → 0,

these ratios are expected to be much larger than 1, in contrast to the PPT theory for

circularly polarized laser fields but in accord with the PPT theory for linearly polarized

fields using p orbitals aligned parallel and perpendicular to the polarization axis.

5. Conclusion

The numerical results for ionization of the valence orbitals 2p± of a model neon atom in a

circularly polarized laser pulse obtained are generally in agreement with the theoretical

results for short-range potentials [13, 14] as well as for the Coulomb potential [21]. In

particular, the counter-rotating electron tunnels preferably. However for strong laser

pulses and low laser frequencies, the discrepancies between numerical and theoretical

results show that the laser-dressed p orbitals play an important role. In a 3-level model

based on Floquet theory we find that, depending on the orbital energy order of the

valence s and p± orbitals, the p− and p+ orbitals are adiabatically modified to laser-

dressed p⊥ and p‖ orbitals or vice versa, where p⊥ and p‖ are aligned perpendicular

and parallel to the instantaneous field. Since the laser-dressed p⊥ and p‖ have different

ionization behaviours, we suggest that for strong laser fields and low laser frequencies,

the laser-dressed p⊥ and p‖ should be used in the derivation of the PPT formulas instead

of p± orbitals, in order to obtain improved formulas for the ionization rates of the initial

p± orbitals.

Furthermore, we discover for the first time that the emission angles for valence p−
and p+ orbitals in circularly polarized laser fields are different. A related phenomenon

for linear polarization has already been found in Ref. [42]. We believe that the emission

angles at the tunnel exit correlate with the offset angles at the detector in the attoclock

experiments [17–20]. Therefore, we expect that the different offset angles for atomic

prepared states P± (e.g. an m-prepared ground state of a halogen atom) can be observed

in attoclock experiments.
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