Numerical verification of the theory of nonadiabatic
tunnel ionization in strong circularly polarized laser

fields

Ingo Barth and Manfred Lein

Institut fiir Theoretische Physik and Centre for Quantum Engineering and
Space-Time Research (QUEST), Leibniz Universitat Hannover, Appelstrale 2, 30167
Hannover, Germany

E-mail: ingo.barth@itp.uni-hannover.de

Abstract. We verify the theory of nonadiabatic ionization of degenerate valence
p+ orbitals in strong circularly polarized laser fields by solving numerically the
two-dimensional time-dependent Schrodinger equation for an effective one-electron
potential of neon. The numerically calculated ionization ratios of the p_ and p;
orbitals agree well with the theoretical results, i.e. the counter-rotating electron tunnels
preferably. However, for strong laser pulses and low laser frequencies, the adiabatic
laser-dressed orbitals play an important role. In a Floquet treatment of a three-level
model we find that in this regime the ionization ratio of initial p_ and py orbitals
depends crucially on the orbital energy order of valence s and p4 orbitals. We also
show that the emission angles of valence p_ and p4 electrons are different and should
be observable in attoclock experiments.
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1. Introduction

Ionization in strong infrared (IR) laser fields is one of the fundemental non-linear
processes in attosecond physics of atoms, molecules and nanostructures [1]. It can be
controlled by varying the intensity, frequency, carrier-envelope phase and polarization
of a few-cycle strong laser pulse [2]. In the case of linear polarization, the electron
can travel back to the parent ion, leading to additional physical phenomena such as
high harmonic generation [3, 4], non-sequential double ionization [5] and photoelectron
scattering [6,7]. These recollision phenomena are absent in circular polarization, because
the photoelectron cannot travel back to the parent ion. Assuming that there is no
resonance-enhanced multiphoton ionization (REMPI) [8], the direct ionization is the
only possible flavour of ionization in strong circularly polarized laser fields. The
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experimental availability of femtosecond IR circularly polarized laser pulses and the
existing theories of tunnel ionization in strong laser fields give us opportunities to
compare experimental and theoretical results directly. Examples are the experimental
and theoretical results of lateral widths of the electron momentum distribution [9-12]
and the ratios of the ionization rates of valence py orbitals of noble gas atoms [13-16].
Here the plus/minus sign denotes the magnetic (azimuthal) quantum number m.
Attoclock experiments using near-circularly polarized pulses measure the offset angles
of the emitted photoelectron at the detector [17-20]. It is one of the hottest topics in
attosecond physics at the present day since it is connected to the determination of the
time delay of direct ionization with attosecond resolution. For a very recent theoretical
treatment including Coulomb effects see Refs. [21,22].

The theory of nonadiabatic tunnel ionization of atoms in strong laser fields, denoted
as PPT theory, was established in the late 1960s [23,24], see also Ref. [26]. This
theory for short-range potentials, however, reported only the formulas for ionization
of arbitrary atomic orbitals in linearly polarized laser fields as well as s orbitals in
circularly or elliptically polarized laser fields. Recently, this theory has been extended
to nonadiabatic ionization of degenerate py and p. orbitals in circularly polarized laser
fields [13,14], see also Refs. [27,28], with interesting features such as the wide-ranging
controllability of spin polarization of the photoelectron [29] and of the rotating hole
dynamics in the remaining ion [30]. Coulomb effects in nonadiabatic ionization by
circularly polarized laser fields have been investigated theoretically in full detail, see
Refs. [21,22]. It has been predicted that counter-rotating electrons that rotate against
the sense of the circularly polarized field undergoes tunnel ionization easier than co-
rotating electrons. In particular, for right circular polarization, the ionization rate of
the p_ orbital is always larger than the one of the p, orbital [13,14]. In other words,
the ionization ratio between p_ and p, orbitals is always above 1. In the low-frequency
limit both ionization rates become equal. This prediction has recently been confirmed
in an experiment on sequential double ionization of argon induced by two time-delayed
strong circularly polarized laser pulses with either the same or opposite helicities [15,16].

In this work, we verify the prediction of PPT theory by numerical solution of the
time-dependent Schrodinger equation. Since the circularly polarized laser field breaks
the cylindrical symmetry and the numerical calculation in three dimensions is time-
consuming, we perform two-dimensional numerical simulations for the ionization of the
doubly-degenerate valence p4 orbitals of a model neon atom, see section 2. We compare
numerical results for ionization ratios with theoretical PPT results and we investigate the
ionization dynamics in detail, such as population dynamics, snapshots of the electron
probability densities and emission angles, see section 3. By further analysis, we find
that for strong laser pulses and low laser frequencies, there are discrepancies between
numerical and theoretical results, arising from adiabatic laser-dressed p orbitals. In a
3-level model based on Floquet theory [31,32] we find in section 4 that the ionization
ratios between initial p_ and p, orbitals can be smaller than 1, in agreement with our
numerical simulations. Section 5 concludes this work. Atomic units are used throughout
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unless otherwise stated.

2. Numerical solution of the 2D time-dependent Schrodinger equation

In this work, we perform simulations of the two-dimensional time-dependent Schrodinger
equation (2D-TDSE) for the ionization dynamics of a valence p electron of a model
neon atom in a strong circularly polarized laser pulse. Using atomic units, the 2D-
TDSE for the one-electron wavefunction ¢ (r,t) = ¢(x,y,t) in the semiclassical dipole

approximation is given by
2
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Observables obtained from this theory are gauge-invariant. The effective atomic 2D
potential Vig(r) is chosen as

Zeﬁc(r)

Verr(r) = o (2)
where we use a position-dependent core charge Z.g(r) = 1 + 9exp(—r?) to account for
the screening of the nuclear charge by the inner electrons. It is similar to the empirical
3D potential in Ref. [33], but due to lower dimensionality the exponential function
exp(—r?) and the soft-core parameter o = 2.88172a.u. are used to obtain the correct
value for the energy of the valence 2p orbital which matches the negative first ionization
potential of neon, Ey, = —I, = —0.793 a.u. [34]. The numerically calculated energies of
the 1s and 2s orbitals are Fy, = —2.952a.u. and Fys = —0.217 a.u., respectively. Our
model does not reproduce the correct energy order of the s and p orbitals. In the real
3D neon atom, we have Ey, < E5,. We will discuss the influence of the orbital energy
order on the laser-dressed orbitals in section 4.

The ionization dynamics is induced by a strong right (4) or left (—) circularly
polarized laser pulse. The corresponding time-dependent electric field EL(#) is defined
via vector potential AL (t) as

d

Ey(t) = -7 Ax(t) (3)

with lim; 1+ A4(t) = 0, in order to satisfy the condition of the far-field approximation
of Maxwell’s equation [35, 36]

/OO E.(t)dt = 0. (4)

o0

In this work, we define the circularly polarized vector potential AL (t) as
AL(t) = —g s(t) [sin(wt) e, F cos(wt) ;] (5)

with the electric field amplitude &, laser frequency w and trigonometric pulse envelope

[37]
sy = 45 (;—;) for ¢ € [0, 222]

, (6)
0 for ¢ ¢ [0, 222 ]
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where n is the number of laser cycles. Our definition of left and right circular polarization
assumes the point of view of the source for a laser field propagating along the positive
z-direction [38,39]. We note that the integral of Ai(t) over the pulse duration is
zero for integers n > 2. In our 2D-TDSE simulations, we use a 3-cycle (n = 3)
right (4) circularly polarized laser pulse with four different electric field amplitudes
£ =0.06a.u., 0.09a.u., 0.12a.u., 0.15a.u., corresponding to maximum laser intensities
Inax = 2.53 x 10 Wem ™2, 5.69 x 10" Wem ™2, 10.11 x 10" Wem ™2, 15.79 x 10 Wem ™2
and five different laser frequencies w = 0.028477a.u., 0.037969 a.u., 0.056954 a.u.,
0.075939 a.u., 0.113908 a.u., corresponding to laser wavelengths A = 27¢/w = 1600 nm,
1200 nm, 800 nm, 600 nm, 400 nm.

The time-dependent wavefunction ¢ (r, t) is propagated using the second-order split-
operator method [40,41] on a Cartesian grid. This spatial grid has 2048 x 2048 = 4194304
grid points with the same step sizes for x- and y-directions, Ax = Ay = 0.1 a.u. The grid
ranges from —102.35a.u. to 102.35a.u. in each direction. The real time step is chosen
as At = (Ax)?/2 = 0.005a.u. =~ 0.121 as. The initial and final times of the real-time
propagation are ¢; = Oa.u. and t; = 1000a.u ~ 24.2fs, respectively. The final time
ts is longer than the length of a 3-cycle pulse even for A = 1600nm. The stationary
normalized wavefunctions ¢, )(r) with principal and azimuthal quantum mumbers
(n,m) for 1s (0,0), 2s (1,0) and 2ps (1,+1) orbitals are obtained by imaginary-time
propagation and orthogonalization under symmetry conditions corresponding to m.
They are used as initial wavefunctions of the real-time propagation. In this work, we
calculate the 2D ionization dynamics numerically for 4 x 5 = 20 different laser pulses
starting either from the 2p, orbital ¢y, (r) or from the 2p_ orbital ¢,, (r).

To avoid unphysical reflections at the grid boundaries and to calculate ionization
yields, we use an imaginary absorbing potential defined as

—1 _as2 f > abs
Vabs(r>—{ ia(r — Taps) or T > T, )

0 for r < rope

with ¢ = 0.1 and 7., = 80a.u. Without absorbing potential, the norm of the time-
dependent wavefunction is conserved, i.e. (¢(r, )|t (r,t)) = 1. With absorbing potential,
the norm of the wavefunction for ¢ > 0 is always less than 1 and the time-dependent
ionization yield can be calculated numerically as

Yinm)(t) = 1 = (Qn,m) (T, 1) [ n,m) (T, ), (8)

where the index (n,m) indicates the initialization of the wavefunction as ¥, m)(r,0) =
G(nm)(r). Furthermore, we also calculate the time-dependent depletion of the initial
wavefunction as

Dy () = 1= [{@,m) (1) |, (1)) (9)

To compare the ionization yields and depletions at the final time ¢; for two initial

wavefunctions ¢, (r), we calculate the ratios
Yo, (t
Y2P+ (tf )
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and

Rp = M (11)

Doy, (tr)
Then, we compare these ratios with the ratios of the ionization rates ws,, using the
simple formulas derived in Refs. [13,14], that is the extension of the PPT theory of
nonadiabatic ionization [23,24], i.e.

Woyp

Ry, = -2 (12)

Wap,,

It can be shown, that the PPT ratios R,, using the simple formulas from Refs. [13,14]
are equal for 2D and 3D. We note that all ratios depend on the laser parameters £ and
w of the right circularly polarized laser pulse. The PPT ratios for cw laser fields are
gauge-invariant [14]. We evaluate these PPT ratios using the peak field strength of our
laser pulses. The PPT ratio R, depends only on the Keldysh parameter v defined as

- % NGT (13)

that discriminates between adiabatic tunneling (v < 1), nonadiabatic tunneling (y ~ 1)
and multiphoton ionization (v > 1). The analytical expression of the PPT ratio R,
is [13,14]

r oo (VOGO VIHY 2 (14)
TGP -GVI+?)

where (o(7y) > 0 is the solution of the transcendental equation

G+ 1 @+
1+42  1—¢ |\ 1+~2

artanh

3. Results and discussion

The ratios Ry (10) and Rp (11) obtained by 2D-TDSE numerical calculations for n = 3
and the PPT ratios R,, (12) are listed in table 1 and also shown in figure 1. This table
and figure show that for not too strong fields the numerically calculated ratios Ry ~ Rp
agree well with the PPT ratios R,,. The PPT ratios for short-range potentials are always
larger than 1, i.e. in a strong right circularly polarized laser field the tunnel ionization
of the valence 2p_ orbital of neon is preferred compared to the tunnel ionization of
the valence 2p, orbital. However, there are some deviations between numerical and
theoretical results. Below, we will discuss the origins of these deviations. We have
also performed numerical calculations for a 6-cycle sin? pulse with & = 0.15a.u. and
A = 1600 nm and for a Gaussian pulse with the same full width of half maximum of the
intensity envelope. The results Ry ~ Rp =~ 0.782 are almost the same for both pulse
shapes. The results are similar to those for a 3-cycle laser pulse Ry ~ Rp ~ 0.748,
see table 1. The weak dependence on the pulse duration is also shown in the recent
work [25].
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Table 1. Numerically calculated ratios of the ionization yields Ry, equation (10) and
depletions Rp, equation (11), compared with PPT ratios of the ionization rates R,
equation (12), for the 2py orbitals of the model neon atom. Results are shown for
various laser parameters £ and A = 27¢/w of the right circularly polarized laser pulse.
The Keldysh parameter v, equation (13), is also shown for each choice of parameters.

€ (au.) A (nm) -~ Ry Rp R,
0.06 1600 0.598 2.076 2.051 2.140
1200 0.797 2.708 2.658 2.671
800 1.195 4.190 4.073 3.918
600 1.594 5.888 5.799 5.337
400 2.391 9.352 9.357 8.415
0.09 1600 0.398 1.383 1.383 1.682
1200 0.531 1.731 1.730 1.979
800 0.797 2.478 2.478 2.671
600 1.063 3.278 3.282 3.479
400 1.594 4.818 4.823 5.337
0.12 1600 0.299 0.969 0.969 1.482
1200 0.398 1.194 1.194 1.682
800 0.598 1.627 1.627 2.140
600 0.797 2.051 2.051 2.671
400 1.195 2.821 2.821 3.918
0.15 1600 0.239 0.748 0.748 1.372
1200 0.319 0.892 0.892 1.521
800 0.478 1.159 1.159 1.856
600 0.638 1.410 1.410 2.241
400 0.956 1.858 1.858 3.144

For large Keldysh parameters v 2 1, the Coulomb potential plays an important
role. Due to the low mean electronic kinetic energy for v 2 1 in a circularly polarized
laser field, namely £%/(2w?) = I,/7* [14], the slow photoelectron can interact with
the attractive long-range potential for a longer time. Including Coulomb effects in
the theoretical treatment [21] shows that for v 2 1 the ratios of the ionization rates
with Coulomb potential are smaller than the ones without long-range potential. For
strong fields, e.g. £ > 0.09 a.u., they could be comparable with numerically calculated
ratios, see figure 5 of Ref. [21]. However, for less strong fields, e.g. £ = 0.06a.u.,
the numerically calculated ratios are significantly larger than the PPT ratios. This is
astonishing, because it has not been predicted in theory yet.

For very small Keldysh parameters v < 1, there are also strong deviations between
the numerically calculated ratios Ry ~ Rp and the PPT ratios R,. The numerically
calculated ratios can be smaller than 1. That is in contrast to the prediction by the
PPT theory [13,14]. Numerically for v < 1 the tunnel ionization of the valence 2p.
(rather than 2p_) orbital in a right circularly polarized laser field is preferred. This
inversion is due to the laser-dressed 2p. orbitals, which are not included in the PPT
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Figure 1. Numerically calculated ratios Ry of the ionization yields, equation (10),
(colour solid) compared with PPT ratios R, of the ionization rates, equation (12),
(black dashed without symbols) for the 2p. orbitals of the model neon atom as a
function of the Keldysh parameter ~, equation (13), for field amplitudes £ = 0.06 a.u.
(violet triangles), 0.09 a.u. (blue squares), 0.12 a.u. (green diamonds) and 0.15a.u. (red
circles) of the right circularly polarized laser pulse. The symbols from left to right
correspond to laser wavelengths A = 1600 nm, 1200 nm, 800 nm, 600 nm and 400 nm.
The ratios Ry and Rp, equation (11), are almost indistinguishable on the scale of the
graph. Therefore, only Ry is sohwn.

theory and become important for high field amplitudes £ and low laser frequencies w.
We will discuss this effect in detail in section 4.

To obtain more insight into the ionization dynamics of the degenerate 2p. orbitals
in a 3-cycle right circularly polarized laser pulse, we choose the example £ = 0.09 a.u.
and A = 800nm. The corresponding numerical results for the time-dependent orbital
populations, norm squares, depletions and ionization yields are shown in figure 2. The
2py or 2p_ orbital at the initial time ¢t = ¢; = Oa.u. is depleted during the tunnel
ionization process, while the laser-induced population of the initially empty 2p_ or 2p,
orbital remains negligible. The populations of 1s (not shown in figure 2) and 2s orbitals
are also very small. The fact that the 2p, /2p_ population and the norm square of
the wavefunction at the final time are almost identical reveals that the populations of
other excited orbitals at the final time are also negligible. It means that the depletion
of the initial wavefunction and the ionization yield at the final time are similar, i.e.
Doy, (t5) = Yop, (ty) and Dy, (tf) =~ Yo, (), leading to similar ratios Ry ~ Rp, see
also table 1 and figure 1. Importantly, figure 2 shows that the dynamics starting from
the valence 2py and 2p_ orbitals are different. In particular, Dy, (t;) > Ds, (t;) and
Yo, (tf) > Ys,, (tf) mean that the electron from the 2p_ orbital is released easier than
the electron from the 2p, orbital. This clearly confirms the prediction of the PPT theory
in Ref. [13,14] and shows that Ry ~ Rp ~ R,, > 1, see table 1.

In the presence of the right circularly polarized laser pulse, electrons from the
valence 2p, or 2p_ orbital of neon can tunnel through the barrier, if the electric field
is strong enough. Tunnel ionization is most probable at time ¢,,,x = 37/w where the
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Figure 2. Ionization dynamics of neon starting from the valence 2p; (a,b)
and 2p_ (c,d) orbital for the field amplitude & = 0.09a.u. and laser wavelength
A = 800nm, corresponding to the Keldysh parameter v = 0.797. Shown are the

populations (¢ (r, t)|pap, (r))|* (a,d) (ved solid), |(¥(r,t)|p2p,_(r))]? (b,c) (green solid)
and [{¢(r,t)|¢p2s(r))|? (b,d) (blue dotted) of the 2p,, 2p_ and 2s orbitals, the norm
square of the wavefunction (¥ (r,t)[(r,t)) (a,c) (orange dash-dotted), the ionization
yields Y, (t) (b) and Y5, (t) (d) (black dash-dotted) and the depletions of the initial
wavefunction Da,, (t) (b) and Da,_(t) (d) (black dashed).

electric field has its maximum value and the corresponding field vector points along
the negative x-direction. Snapshots of the numerically calculated electron probability
density [¢(r, tmax)|? for € = 0.09a.u. are shown in figure 3. This figure clearly shows
that the ionization probabilities for 2p4 orbitals are different and the ionization from
the 2p_ orbital is preferred. The numerically calculated ratios Ry and Rp agree well
with the PPT ratios R, for different laser wavelengths, see table 1 for & = 0.09a.u.
They are larger than 1, i.e. the bound state with the counter-rotating electron is ionized
easier.

Figure 3 also shows the radius-dependent positions (Zmax(7), Ymax(r)) corresponding
to the angle where the electron probability density at ¢ = t,.c is maximal. These
different curves for initial 2py orbitals mean that the emission angles ¢g,,
arctan (y2PE (Toxit) /T2PE (Texis)) at the miniumum distance to the tunnel exit regq =
7.38a.u. are different. They also depend on the field amplitude (cf.figure 5) and
frequency. For fast electric field rotations (small wavelength), the emission angles
deviate strongly from zero. This is in contrast to the semiclassical picture where
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Figure 3. Snapshots of the electron probability density [¢(r,tmay)|? in a.u. at
time ¢t = tpmax = 37/w where the right circularly polarized electric field has the
maximum and the corresponding field vector points along the negative z-direction
(orange arrows), for the field amplitude £ = 0.09a.u., different laser wavelengths
A = 1600nm (a,d), 800nm (b,e), 400nm (c,f) and different initial orbitals 2p; (a—
¢) and 2p_ (d—f). The density for radii larger than the minimum distance to the
tunnel exit reyiy = 7.38a.u. is scaled by the factor 3000 to better display both the
bound-state inner region and the ionization part in the outer region. The red (2p4)
and green (2p_) curves correspond to the radius-dependent angle where the electron
probability density is maximal. The coordinates x and y are in atomic units.
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Figure 4. (a) Electron probability density |1(r, tmax)|? at the minimum distance to
the tunnel exit, r = 7oy = 7.38 a.u., versus angle ¢ = arctan(y/z) for right circular
polarization, field amplitude £ = 0.09 a.u., laser wavelength A = 800 nm and different
initial orbitals 2p; (red) and 2p_ (green) with corresponding maxima at emission
angles @), < @2p, < 0. (b) Emission angles g, () versus radius r for 2p; (red)
and 2p_ (green) orbitals and the difference Ap(r) = @a,, (1) —2,_ (1) (black dashed).

The radius r = rexit, is shown as vertical line.
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the electron tunnels exactly against the electric field vector, i.e. in the positive x-
direction, corresponding to zero emission angle. Numerical calculations in figure 3
show that the emission angles are always smaller than 0 for right circular polarization
(¢right < 0). Although negative emission angles for right circular polarization due to
the Coulomb potential (@pcouomp < 0) have recently been predicted theroetically in
Ref. [21], this theory does not predict the different emission angles o, for 2py orbitals.
Detailed analysis of the electron probability density [¢(r, tmax)|* at 7 = rey; versus angle
¢ = arctan(y/x) (see figure 4) shows that the emission angle for 2p, orbital is closer to
zero than for 2p_ orbital (g, < s, < 0). This is plausible because the azimuthal
momentum component of the 2p, /2p_ orbital is positive/negative (cf. Ref. [42]), adding
to or subtracting from the mean emission angle ¢ = (¢g,, + ¥2p_)/2 < 0, respectively.
We expect that this non-zero mean emission angle ¢ < 0 for right circular polarization
is comparable with ¢couomp < 0 [21]. The non-zero emission angles for degenerate
E. states in a linearly polarized laser field have already been observed in numerical
calculations [42]. The E. states are eigenstates of the angular momentum component
f)z, similar to Py states. Due to the non-zero and opposite angular momenta of F.
states, one finds pp, > 0and pp_ = —¢pg, < 0 for linear polarization [42]. Figure 4 also
shows the emission angles g, (1) = arctan(y?P= (r) /2Pt (r)) at t = ¢y as a function of
r. It clearly shows that the difference of emission angles Ag(r) = @gp, (1) — op_ (1) for
r > rexit depends only weakly on r and has a robust value of about 6°—10°. Furthermore,
we expect that this difference does not change significantly with time, even after the end
of the laser pulse. Therefore, we believe that different emission angles for degenerate
valence py orbitals of the atomic prepared state Py (e.g. ground state of a halogen
atom) can be observed in attoclock experiments, see Refs. [17-20]. Recently, it has
been theoretically predicted for one-photon ionization in a circularly polarized laser
field that the time delay is sensitive to the emission angle of the photoelectron and that
there is a pronounced difference between co- and counter-rotating electrons from 2p.
orbitals of the excited Li atom [43].

4. Laser-dressed orbitals

As already mentioned in the previous section, the numerically calculated ratios of
the ionization yields Ry and depletions Rp for high field amplitudes £ and low laser
frequencies w, corresponding to low Keldysh parameters v = \/Ew /&, can be smaller
than 1, see table 1 and figure 5. This cannot be reproduced by PPT theory for
circular polarization [13,14], because laser-dressed 2p. orbitals are not considered in
this theory. For the strong field £ = 0.15a.u., the strongly laser-dressed 2p. orbitals
are clearly visible in the inner region of the snapshots of the electron probability density
[9(r, tmax ) |?, see figure 5, particularly for long wavelength. For right circular polarization
and orbital energy order Ej, < Ess as well as w < Ey; — Ej, used in the 2D numerical
calculations (see below), the initial 2p, orbital is modified to the rotating 2p,-like orbital
denoted as 2p orbital since this orbital is always aligned with the rotating electric
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Figure 5. Same as for figure 3, but for stronger field amplitude £ = 0.15 a.u. to bring
out the laser-dressed 2p4 orbitals. The density for radii larger than the minimum
distance to the tunnel exit, reyy = 3.81 a.u., is scaled by the factor 30.

field vector. In contrast, the initial 2p_ orbital is modified to the rotating 2p,-like
orbital denoted as 2p, orbital that is always aligned perpendicular to the electric field
vector. The ionization of the 2p orbital is preferred since in the semiclassical picture
the electron tunnels preferably against the electric field vector and the ionization of
the 2p, orbital is suppressed. The ratios of the ionization yields Ya,, (tf)/Yap, (tf)
and depletions Dy, (tf)/Day (ty) are therefore smaller than 1. This implies that
Ry = Yo, (t§)/Yop, (tf) = Rp = Dap_(t5)/Dap, (ty) < 1. In the low-frequency limit
w — 0 (corresponding to v — 0), PPT theory for laser fields without envelope predicts
that the ratio R, is exactly equal 1, see Refs. [13,14]. In the simulation, in contrast,
there is a slow adiabatic change of the initial 2p. orbitals to laser-dressed 2p) and 2p,
orbitals during the laser pulse. If we wish to account for the laser-dressing in the PPT
theory, we have to use non-degenerate 2p; and 2p, orbitals for initialization instead of
degenerate 2p4 orbitals.

We will investigate how the laser-dressed orbitals depend on the electric field
amplitude, laser frequency, sense of circular polarization, orbital energies and orbital
energy order. The shifts of the energy levels of atoms and atomic ions by dynamic Stark
effects can be calculated theoretically based on the Floquet theory [31,32], see Ref. [44]
for alternating laser fields and Refs. [45-47] for circularly polarized and arbitrarily strong
laser fields using matrix diagonalization. However, these references do not discuss the
shape of laser-dressed orbitals. Here, we apply the Floquet theory to one electron in a
three-level model in a circularly polarized laser field without envelope to describe the
laser-dressed orbitals 2p; and 2p,; qualitatively. We are aware that Floquet theories can
be problematic for short pulses [48]. However, in this work, we would like to keep the
theory as simple as possible. Since the TDSE results for a 3-cycle laser pulse and for a
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6-cycle laser pulse are similar (see above), we expect that the adiabatic Floquet theory is
applicable. We calculate not only energy shifts but also the Floquet states. The field-free
energy eigenstates of our three-level model are the 2s and 2p. orbitals. We assume that
the choice of only these three orbitals is sufficient for qualitative description of orbital
alignment and that the contributions of other field-free orbitals to the field-induced 2p,
and 2p, orbitals are not important. Multilevel Floquet theory with numerical matrix
diagonalization could be used, but it is outside the scope of this work as we do not aim
at quantitative agreement with the TDSE results.
According to the Floquet theory, we consider the periodic Hamiltonian

Hp(t) = Hp(t+nT) = Hy+r-Ey(t)  (ne2) (16)

where Hy = —V?/2 4 Vig(r) is the time-independent Hamiltonian and T' = 27 /w is the
laser period. To solve the corresponding TDSE

o .

io [¥r(t)) = He(t)[Yr(t) (17)
for the one-electron wavefunction ¢z (r,t), we use the ansatz

W (t)) = |or(t))e™ (18)

where Er is the quasienergy and ¢p(r,t) = ¢p(r,t + nT) is the periodic Floquet
wavefunction. Inserting equation (18) into equation (17) yields

(= o 157 + 5 B2(0)) [05(0) =0 (19

As an ansatz for the Floquet wavefunction ¢g(r, t) we use a superposition of the field-free
2s and 2p4 orbitals, i.e.

[6r (1) = aldas) +bre™ |y, ) + b_e™ b, ). (20)

It satisfies the periodicity condition ¢r(r,t) = ¢p(r,t + nT). The different signs F
and + in equation (20) correspond to the sense of the circular polarization of the laser
field E4 (¢). The choice of the exponential factors in equation (20) is justified because
for right circular polarization one photon is necessary for the transition s — p,. Thus
there is an additional factor e™! in the 2p, term compared to the 2s term. Likewise,
one photon is necessary for the transition p_ — s, thus there is an additional factor
et in the 2p_ term. Applying (¢os|, (d2p,| and (¢, | to equation (19) and using
H0\23> = Fo,|2s) and H0|2pi> = E5,|2p1) as well as the only one non-vanishing dipole

matrix element D = (do, ||y, ) = (Pos|r|P2p_)*, we find the three equations

(Eys — Ep)a+ D -Ex(t)bye™ + D* - EL(t)b_e™™" =0, (21)
(Ey — Ep Fw)by +D* - Ey(t)ae™™! =0, (22)
(Eop — Ep £w)b_ +D - Ey(t)ae™" =0. (23)

In our definition of the dipole matrix element, we have omitted the negative charge of
the electron. Using the right (+) or left (—) circularly polarized electric field

E.(t) = £ [cos(wt) e, £ sin(wt) e,] (24)
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and the dipole matrix element

D= \/— (<¢23| |¢2px> + 1<¢28|r|¢2pu>) D (e, + 1ey) (25)

where D = (¢os|z|¢2p, ) /V2 = (das|y|pap, ) / V2, we obtain
D - E.(t) = DE [cos(wt) + isin(wt)] = DEeF". (26)

Inserting this equation into equations (21)—(23) yields the system of time-independent
equations in matrix notation

EQS - EF Dg Dg a
DE  Ey—ErFuw 0 b. | =o. (27)
DE 0 By — Ep £ w b_

To obtain non-trivial solutions for the three quasienergies Er and amplitudes a, b,
the determinant of the matrix in equation (27) is set to zero, leading to a cubic equation
in Fl, i.e.

(Ej, — AB)(EE — w?) — 2(DE) B} = 0, (28)

where E}, = Ep— Es, is the relative quasienergy to the energy of the field-free 2p orbital
and AE = By, — Ey, is the energy difference between field-free 2s and 2p4 orbitals. We
note that in the zero-field case (£ = 0), the relative quasienergies are E, = AFE and
E}, = zw, corresponding to Ep = E, and Ep = Ey, = w. In our case, the non-zero
laser frequency w is not equal to the energy difference AFE, i.e. 0 # w # |AE|. Then,
the cubic equation (28) has three real distinct solutions for the relative quasienergy E’..
We use Cardano’s formula [49] to obtain three (m = 0, £1) relative quasienergies T,

as
AFE
Ebp = )™ 24/Q cos ( (0 — m7r)> + 5 (29)
where
0 = arccos i : (30)
/03
AFE AE)?
R= (DE)?* — w® + (ABY : (31)
3 9
1 AE)?
Q=3 (2(D5)2 + w? + %) : (32)
The corresponding Taylor series up to second order in DE for AE > w > 0 are
2AE(DE)?
Ehy ~AE+ ———
F,0 + (AE)2 _ Ct.)2’ (33)
: (DE)?
Epamw= 25" (34)
DE)?
By ~ —w— 28) (35)

CAE+w
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Figure 6. Relative quasienergies Ef,, = Epm — E2p, equation (29), of the three
laser-dressed orbitals 25 (m = 0, blue dotted), 2p; (m = —1, green solid) and 2pj
(m = 1, red solid), connecting to the field-free orbitals 2s (m = 0), 2p_ (m = —1)
and 2py (m = 1), for the laser wavelength A = 1600 nm, corresponding to the laser
frequency w = 0.0285a.u.. This graph assumes the case AE > w > 0 with orbital
energy difference AE = Ey, — Ey, = 0.576 a.u. and dipole strength D = 0.463 a.u. The
energies are plotted versus electric field amplitude £ of the right circularly polarized
periodic laser field. The field amplitude £ = 0.15 a.u. is shown as vertical black line.

In the zero-field limit (£ — 0) and for AE > w > 0, these relative quasieneriges
approach Ep, = AFE and Ep., = tw. Therefore, by comparison for right circular
polarization (see equation (27)) E7, corresponds to the field-free 2s orbital whereas
E}Fl correspond to the field-free 2p, orbitals. Figure 6 shows the relative quasienergies
Er (m = 0,%1), equation (29), for AE > w > 0 versus electric field amplitude &,
where the numerically calculated dipole strength D = 0.463a.u. in our 2D model of
neon atom is used. For other cases w > AF > 0,0 > AEF > —wand 0 > —w > AF,
the meaning of the relative quasienergies E7,,, at the limit £ — 0 are changed, because
m = 0 always corresponds to the state with the highest energy, m = —1 to the state
with the middle energy and m = 1 to the state with the lowest energy, see table 2 for
the results. For right circular polarization and AE > w > 0, these field-free 2s, 2p_
and 2p, orbitals modify adiabatically to field-dressed 25 (m = 0), 2p, (m = —1) and
2p; (m = 1) orbitals (see below) with increasing field amplitude £. There are no energy
crossings between Floquet states. For the cases w > AE > 0, 0 > AF > —w and
0 > —w > AF, the adiabatic modification of the orbitals is different, see below and
table 2.

The real amplitudes a,, and by ,, of the field-free 2s and 2p, orbitals contributing
to the laser-dressed orbitals for m = 0,+£1 and right circular polarization are easily
calculated using equation (27), resulting in
D&

B Epm Tw
D&

= /
EEm—w

b+,m A, (36)

b (m, (37)
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Table 2. Relative quasienergies Ef,, = Erm — E2p, equation (29), in the zero-field
limit (£ — 0) (first line of each row) of the right circularly polarized periodic laser
field and the corresponding modifications of field-free orbitals to laser-dressed orbitals
(second line of each row) for the three Floquet states (m = 0,£1) and four different
cases for the orbital energy difference AE = Eog — Eoy,.

m AE>w>0 w>AE>0 0>AFE>-—-w 0>-—-w>AFE

0 AFE w w w

25 — 25 2p_ — 28 2p_ — 2pH 2p_ — 2p||
-1 w AE AE —w

2p_ — 2py 25 = 2py 2s = 2py 2p+ — 2p)
1 —w —w —w AFE

2py — 2p) 2p — 2p 2py — 25 25 — 25

with normalization condition
a12n + bi,m + bZ—,m =1, (38)

(DE) ey 1"

m — 1
‘ B W) (B —w)?

(39)

At time ¢ = tpx = 37/w, where the electric field vector points along the negative z-
direction, see figure 5, the amplitudes b, ,, and b, ., of the field-free 2p, and 2p, orbitals
are calculated as

b+m+b—m
bwm:;7 40
: 7 (40)

bim —b_m
byﬂn:—hT’. (41)

Using equations (20), (40), (41), ¢as(r) = ¢os(r) and ¢ops(r) = ¢op(r)e™#, the time-
dependent electron probability density of the field-dressed orbitals for right circular
polarization is

|Drm(r, ) = ag,|as(r)]* + (V2 + 02 ) [d2p ()] (42)
+ 20, (b 4+ by, — ) a5 (1) P2y (1) cOs(wt — @)
+ 2y 4 by — | op (7) |? cos(2(wt — ¢))
and for t =t = 37/w
| Fm (T, tma) [ = 2o (1) [P+ (b2, + 02 ,) |02 (7) (43)
— 2V/2 by 25 (1) ooy () cos
+ (03— by ) |02 (1) [? cO8(20)..

The first two terms of equation (42) are time-independent and do not contribute to
the electron dynamics of the dressed orbital. For a,, # 0, i.e. including the 2s orbital,
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Figure 7. Weights |a,,|?, see equation (39) (blue dotted), |[b_ ,|?, see equation (37)
(green solid), and |b; ,,|?, see equation (36) (red solid), as well as |b, m|?, see equation
(40) (orange dashed) and |b, ,,|?, see equation (41) (violet dashed), of the field-free
2s and 2p4 orbitals as well as of the corresponding 2p, and 2p, orbitals at ¢ = tyax
contributing to the laser-dressed 2p, (a) and 2p) (b) orbitals, connecting to the field-
free 2p_ and 2p, orbitals. The laser wavelength is A = 1600 nm, corresponding to the
laser frequency w = 0.0285 a.u. This graph assumes the case AE > w > 0 with orbital
energy difference AE = Ey, — Ey, = 0.576 a.u. and dipole strength D = 0.463 a.u. The
weights are plotted versus electric field amplitude £ of the right circularly polarized
periodic laser field. The field amplitude £ = 0.15 a.u. is shown as vertical black line.

the term proportional to cos(wt — ¢) distorts the orbital and this distortion rotates
with the electric field vector. If the relative quasienergy BT, decreases with increasing
field amplitude &, it can be shown that the prefactor a,,b, ,, is negative, leading to the
distortion of the orbital to the positive z-axis at the time ¢ = t,,,, when the electric
field points along to the negative z-axis. If both b, 4+ # 0 and b, _ # 0, the term
proportional to cos(2(wt — ¢)) contributes to the laser-induced modification of the field-
free 2p. orbitals and rotates with the electric field vector. In particular at time ¢ = ¢,
this term is non-zero for by, # by, i.e. for the different populations of the 2p, and
2p, orbitals. This modified orbital is aligned along the rotating electric field vector if
|bzm| > |bym| and perpendicular to the rotating electric field vector if by m| < [by.ml-
These two possibilities correspond to the field-dressed rotating 2p| and 2p, orbitals,
respectively. It can be shown analytically, that for the case AE > w > 0 the conditions
by 1| < |by—1| and |by1| > |b,1| are satisfied, therefore the field-free 2p_ and 2p,
orbitals are modified adiabatically to the 2p, and 2p) orbitals, respectively. Figure 7
confirms this conclusion for the case AE > w > 0 by showing the weights |a,,|* and
bxm|? as well as |b, ,|? and |b,m|* for a right circularly polarized laser pulse. The
results for the cases w > AF > 0,0 > AE > —w and 0 > —w > AF are summarized in
table 2.

Therefore, by deep analysis of the three-level Floquet theory, we confirm that
the initial 2py orbitals for high field amplitudes £ and low laser frequencies w are
strongly modified, see figure 5. In particular, for our 2D model of neon atom, where
AE = Fys — Ey, > w, the initial 2p_ and 2p,; orbitals are modified to laser-dressed
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2p, and 2p) orbitals that are perpendicular and parallel to the rotating electric field
vector, respectively. Therefore, the ratios of the ionization yields Ry and depletions
Rp will be smaller than 1, because the tunnel ionization of the 2p orbital is preferred
over 2p,. Figure 1 indicates that in linear extrapolation to the low-frequency limit
w — 0, smaller electric field amplitudes imply smaller ratios. This is qualitatively
consistent with the low-frequency limit for the ratio of two orthogonally oriented orbitals
ionized by a linearly polarized field [23]. Very recently, these discoveries with respect
to orbital modifications and ratios of ionization rates are also confirmed by numerical
TDSE calculations for the 2D model argon atom [25]. However, in a real 3D noble
gas atom with AE = Fyy — Ey, < —w, we conjecture that the ionization behaviour is
completely reversed, i.e. the initial 2p_ and 2p, orbitals are modified to laser-dressed
2p) and 2p, orbitals, respectively, see table 2. It leads to ratios Ry and Rp larger than
1, which is in principle in accord with the PPT theory. However, in the limit w — 0,
these ratios are expected to be much larger than 1, in contrast to the PPT theory for
circularly polarized laser fields but in accord with the PPT theory for linearly polarized
fields using p orbitals aligned parallel and perpendicular to the polarization axis.

5. Conclusion

The numerical results for ionization of the valence orbitals 2p4 of a model neon atom in a
circularly polarized laser pulse obtained are generally in agreement with the theoretical
results for short-range potentials [13,14] as well as for the Coulomb potential [21]. In
particular, the counter-rotating electron tunnels preferably. However for strong laser
pulses and low laser frequencies, the discrepancies between numerical and theoretical
results show that the laser-dressed p orbitals play an important role. In a 3-level model
based on Floquet theory we find that, depending on the orbital energy order of the
valence s and p. orbitals, the p_ and p, orbitals are adiabatically modified to laser-
dressed p, and p; orbitals or vice versa, where p; and p are aligned perpendicular
and parallel to the instantaneous field. Since the laser-dressed p; and p have different
ionization behaviours, we suggest that for strong laser fields and low laser frequencies,
the laser-dressed p, and pj should be used in the derivation of the PPT formulas instead
of p4 orbitals, in order to obtain improved formulas for the ionization rates of the initial
p+ orbitals.

Furthermore, we discover for the first time that the emission angles for valence p_
and p, orbitals in circularly polarized laser fields are different. A related phenomenon
for linear polarization has already been found in Ref. [42]. We believe that the emission
angles at the tunnel exit correlate with the offset angles at the detector in the attoclock
experiments [17-20]. Therefore, we expect that the different offset angles for atomic
prepared states Py (e.g. an m-prepared ground state of a halogen atom) can be observed
in attoclock experiments.
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