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For a quantitative trajectory-based description of strong-field photoelectron holography beyond the electric
dipole approximation, we develop a semiclassical model in which the initial conditions of outgoing electrons
are set according to the beyond-dipole strong-field approximation for the tunnel-ionization step. Phases are
evaluated following the prescription for semiclassical propagators. Comparison to the numerical solution of the
time-dependent Schrödinger equation in two spatial dimensions shows that the semiclassical model reproduces
correctly the nondipole shifts of the photoelectron momenta along the laser propagation axis. The position of
the central holographic interference fringe can be estimated already from a simplified Coulomb-free interference
model providing closed-form expressions for the beyond-dipole shifts. To address Coulomb focusing in three
dimensions, we implement a beyond-dipole regularization procedure based on the concept of glory scattering.
While the position of the central maximum and higher-order fringes in three dimensions can already be obtained
approximately by simpler semiclassical modeling, the glory model is able to describe the shape of the distribution
at the central maximum. Our results show that nondipole dynamics in holography should be observable with
midinfrared fields, for which the forward and backward shifts can be comparable with the fringe spacing.

DOI: 10.1103/PhysRevA.100.023413

I. INTRODUCTION

The idea of conventional holography [1] can be transferred
to strong-field ionization to self-probe atomic and molecular
structure and dynamics on a subfemtosecond time scale [2].
In strong-field photoelectron holography (SFPH), the electron
wave packet after tunnel ionization is steered by the time-
dependent laser field. The wave packet contains one part with
large initial transverse velocities, forming a reference wave,
while another part with small transverse velocities is driven
back to the ion where it scatters and forms the signal wave.
The interference of the signal and reference waves creates a
hologram that encodes spatial and temporal information about
the ion as well as the recolliding electrons with attosecond
resolution. Even though in the first experimental realizations,
a free-electron laser was used [2,3], SFPH can be realized in
tabletop experiments [4,5]. As an ultrafast imaging method it
has been used to successfully probe the continuum electron
phase of molecular ionization [6], as well as the nuclear mo-
tion and also electronic valence-shell dynamics in molecules
[7,8].

For the decoding of the photoelectron hologram and hence
extraction of information on the investigated system, an ap-
propriate modeling of the strong-field driven quantum dy-
namics is essential. The simplest possible approaches are
the simple man’s models [9,10] that divide the full process
into a sequence of several steps. The reference electrons can
be described in a two-step model consisting of (i) laser-
induced ionization and (ii) potential-free acceleration of the
electron as a classical particle in the laser field [11,12]. This

*lein@itp.uni-hannover.de

description predicts the well-known electron-energy cutoff at
2Up for “direct” above-threshold ionization (ATI) [13], where
Up = E0/(4ω2) is known as the ponderomotive potential for
a linearly polarized laser field with amplitude E0 and photon
energy ω. (We use atomic units unless stated otherwise.) For
large initial transverse velocities with respect to the laser
polarization, the electron makes a wide turn around the ion.
It interacts only weakly with the core and forms the reference
wave. In contrast, for small transverse velocities, the electron
can be driven back to the close vicinity of the ion during its
acceleration and it may scatter off the potential before it is
subsequently accelerated in the field for a second time. The
returning electron may also recombine with the parent ion and
emit high-order harmonics [14,15] or it can release another
electron from the atomic ion, leading to nonsequential double
ionization [16]. Due to this recollision step we speak of the
three-step model [17,18]. In SFPH, however, we focus on the
case that the returning electron undergoes elastic scattering.
“Backscattered” electrons form in photoelectron energy distri-
butions a high-energy plateau reaching up to the 10Up cutoff
[19,20]. On the other hand, “forward scattered” electrons have
much higher emission probability such that they typically
form the signal wave packet in SFPH.

For photoelectrons with low transverse final momenta this
simple picture breaks down in long-range Coulomb-like po-
tentials of positively charged ions. Here, in three dimensions,
an infinite number of classical trajectories, which are launched
with nonzero initial velocities distributed on a specific circle
in the plane of transverse momenta, is mapped to a tiny
region in the space of final momenta. Since the electrons
are focused in the momentum space along the polarization
axis the effect is called Coulomb focusing [21,22]. For a
quantitative description, the unphysical classical caustic has
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to be regularized by taking the quantum nature of the focusing
process in terms of glory rescattering into account [23,24].
The Coulomb potential manifests itself also in the rich low-
energy structures near the ionization threshold in midinfrared
laser fields [25]. These low-energy structures have been traced
back to multiple forward scatterings by the Coulomb potential
during the oscillatory motion in the laser field [26,27].

Photoelectron momentum distributions (PMDs) obtained
by the numerical solution of the three-dimensional time-
dependent Schrödinger equation (TDSE) agree well with ex-
perimental data. For example, the spacings between different
side lobes (fringes) of the holographic pattern are reproduced
[2,3]. However, such calculations are only possible for small
systems with high symmetries in a restricted region of laser
parameters. A simplified quantum-mechanical theory known
as strong-field approximation [28–30] can be obtained by
assuming that once the electron has been released, its motion
is fully governed by the laser field. This method describes
successfully “direct” ionization. However, even a perturba-
tive inclusion of the ionic potential by means of a Born
series [31,32] cannot model correctly SFPH in realistic long-
range potentials. Employing classical trajectories prescribed
by Newton’s equation for the acceleration step of the two-step
model, the classical trajectory Monte Carlo (CTMC) simula-
tions can be used to study qualitatively Coulomb focusing as
well as low-energy structures [27]. Furthermore, semiclassical
models such as quantum trajectory Monte Carlo (QTMC)
simulations [33], the Coulomb-corrected strong-field approx-
imation (CCSFA) [34–36], the semiclassical two-step model
(SCTS) [37], or the Coulomb quantum orbit strong-field ap-
proximation (CQSFA) [38] offer the possibility to describe
interference effects by associating to each classical trajectory
a phase determined by the classical action. However, the
CCSFA and QTMC models include the Coulomb potential
only in first-order perturbation theory in the semiclassical
phase such that the positions and spacings of interference
structures are only qualitatively reproduced [37]. The SCTS
and CQSFA approaches are based on a semiclassical ap-
proximation of the time-dependent propagator formulated as
Feynman path integral (see Ref. [39] for a textbook treatment)
such that their description of the second step includes the
Coulomb potential in a nonperturbative manner.

The description of the introduced processes is mostly car-
ried out in electric dipole approximation where it is assumed
that the incident electric field is spatially homogeneous over
the field-target interaction region and furthermore the mag-
netic field is completely neglected. The relevant parameter
that characterizes the applicability of this approximation is
the relativistic parameter ξ = E0/(ωc), where c = 1/α ≈ 137
is the speed of light. However, in SFPH experiments usually
midinfrared light sources are used [3], such that the recent
improvements in the imaging techniques for photoelectrons
[40–42] offer the possibility to observe effects beyond the
dipole approximation in SFPH. The transfer of photon mo-
mentum to the photoelectrons has already been observed in
“direct,” recollision-free ionization with circularly polarized
drivers [42,43]. In addition, in linearly or slightly ellipti-
cally polarized laser pulses a counterintuitive shift of the
low-energy rescattered electrons against the light propagation
direction [44,45] has been attributed to the interaction of

the tunneled electron with the Coulomb potential. The struc-
tures have been analyzed by numerical solution of the TDSE
[46,47] and have been interpreted in classical CTMC simula-
tions [48] as well as semiclassical CCSFA calculations [49].
The theoretical analysis of the classical caustic [50] predicts
that the shift of the beyond-dipole distribution depends on the
momentum px in polarization direction. However, as pointed
out above, the caustic is an indication that the semiclassical
analysis breaks down [24,39].

In this paper, we investigate the photoelectron holography
beyond the electric dipole approximation. To this end, we
develop a semiclassical model based on the path-integral ap-
proach [37,38] that includes beyond-dipole corrections prop-
erly in the associated phase as well as initial distribution
of electron velocities. Using this semiclassical model, we
can quantitatively explain the shift of the central holographic
finger in 2D by analyzing the interference between two rel-
evant trajectories. Physical insight is gained by a beyond-
dipole simple man’s model that allows a qualitative, analytical
treatment. In 3D, Coulomb focusing causes the semiclassical
model to break down in the region of the central maximum of
the momentum distribution. Therefore, the 3D Coulomb fo-
cusing beyond the dipole approximation is analyzed by means
of a modified model inspired by glory rescattering [24]. Our
theory shows that the central maximum is dominated by the
quantum interference of an infinite number of semiclassical
paths and hence also in 3D the phase of the trajectories plays
an important role. The high-order interference maxima in
SFPH are also modified by nondipole effects which have been
qualitatively observed by Chelkowski et al. [46,51]. Here,
we investigate the shift of the interference structure for var-
ious orders of the holographic fringes and analyze also their
forward-backward asymmetry in the emission strength. We
compare all results to the numerical solution of the nondipole
TDSE in two and three dimensions.

II. METHODS

A. Semiclassical model beyond the electric dipole approximation

Quantum mechanically, the photoelectron momentum dis-
tribution (PMD) is given by the modulus square of the over-
lap between the time-evolved state of the system ψ (t f ) =
U (t f , t0)ψ0 and the scattering state ψ (−)

p corresponding to an
asymptotic momentum p:

Mp(t f ) = 〈ψ (−)
p |U (t f , t0)|ψ0〉. (1)

The nonrelativistic time evolution of the initial state is deter-
mined by the TDSE

i∂tψ (t ) = Hψ (t ), (2)

with the Hamiltonian H in Coulomb gauge given by

H (r, p̂, t ) = 1
2 [p̂ + A(η)]2 + V (r). (3)

For a plane-wave laser pulse the introduced vector potential
A(r, t ) = A(η) depends only on the light-cone coordinate η =
t − z/c. It is related to the magnetic field by B = ∇ × A and
to the electric field by E = −∂t A. Here, we denote the static
ionic potential by V (r).

As shown in Refs. [52,53] the quality of the semiclassi-
cal approximation improves tremendously [compared to its
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application to the time-evolution operator in Eq. (1)] if the
time-evolution operator is portioned such that (i) initial state
evolves in the field-free atomic potential given by ψ0(t ′) =
U0(t ′, t0)ψ0 = exp[iIp(t ′ − t0)]ψ0 with the ionization poten-
tial Ip, (ii) at a time t ′ the electron is “kicked” by the
interaction operator HI (t ) = p̂ · A(η) + A2(η)/2, and (iii) it
subsequently interacts with the laser field as well as the
potential. Using the Dyson equation, the ionization amplitude
reads

Mp(t f ) = −i
∫ t f

t0

dt ′ 〈ψ (−)
p |U (t f , t ′)HI (t ′)|ψ0(t ′)〉. (4)

For large final times t f the photoelectron is far away from
the ionic core and we can approximate the scattering state
ψ (−)

p by a plane wave with the same asymptotic momentum p.
Introducing the closure relation 1 = ∫

dr̃ |r̃〉〈r̃| the ionization
amplitude can be written as

Mp(t f ) = −i
∫ t f

t0

dt ′
∫

d r̃〈p|U (t f , t ′)|r̃〉 〈r̃|HI (t ′)|ψ0(t ′)〉.
(5)

We evaluate the mixed position-momentum-space propaga-
tor 〈p|U (t f , t ′)|r̃〉 within the semiclassical approximation of
Feynman’s path integral in Lagrangian formulation (see, e.g.,
Ref. [39] for a textbook treatment). The main idea of this
approach is that the (classical) action in the Feynman prop-
agator is large compared to the quantum action h̄ = 1 such
that the path integral over (in general nonclassical) paths is
dominated by the region around the classical path and can
be approximated by the saddle-point method. The classical
reference paths rs(t ) satisfy the classical equation of motion
including electric- and magnetic-field terms:

k̇s(t ) =−∇rV (rs(t )) − ez

c
E(ηs(t )) · ṙs(t ), (6)

ṙs(t ) = ks(t ) + A(ηs(t )), (7)

that are written as Hamilton’s equations with a canonical
momentum ks(t ). All classical paths that fulfill the initial
and final boundary conditions, r̃ = rs(t ′) and p = ks(t f ), re-
gardless of the auxiliary initial momentum p̃ = ks(t ′) have
to be taken into account. Neglecting Maslov’s correction, the
semiclassical propagator reads as (up to an overall phase)

〈p|U (t f , t ′)|r̃〉 ≈ eiϕ

(2π )3/2

∑
s

√∣∣∣∣det

[
∂ks(t ′)
∂ks(t f )

]∣∣∣∣eiS(ks,rs ). (8)

The action associated to a path is given by [39,54]

S[k, r] = − k(t ′) · r(t ′)

−
∫ t f

t ′
dt[k̇(t ) · r(t ) + H (r(t ), k(t ), t )]. (9)

At each time t ′ and for every initial position r̃ we would
need to search in the space of initial momenta p̃ all possible
classical trajectories. For simplification, in the spirit of the
two-step model we would like to introduce a connection
between the auxiliary momenta p̃ and the initial positions r̃ of
the classical trajectories and hence to unravel the r̃ integration
in Eq. (5). Even though there is no fundamental justification,
this concept of a defined tunnel exit is well established in the

semiclassical modeling of strong-field phenomena (compare,
e.g., Refs. [34,55,56]).

In addition, we apply the saddle-point approximation to the
time integral and hence we only need to take into account a
finite number of complex-valued initial times. To this end,
we have to continue the classical paths into complex time
t ′ = t0 + iτ . In the spirit of the complex-time quantum-orbit
model [57], we choose a path consisting of two sections: (i)
one from the complex valued time t ′ = ti down to the real axis,
i.e., t ′ → Re(t ′), which can be identified with the under-the-
barrier tunneling process; (ii) the acceleration step identified
with the real motion in real time from the time Re(t ′) = t0,
where the electron is born in the continuum up to the final time
t f , where the electron reaches the detector. In order to simplify
the calculation we neglect the potential V during the first step
of tunnel ionization. Hence, in first order of 1/c, an auxiliary
electron momentum p̃′ [not equal to the momentum in Eq. (7)]
exists that is conserved during the potential-free motion and
would be equal to the final momentum, if the potential was
also neglected in the second step. In this case, the EOM (7)
can be solved analytically in first order of 1/c. By assuming
real-valued trajectories in the second step, i.e., Im(r(t0)) = 0,
and a vanishing real part of the position at the complex-valued
time t ′

s, i.e., Re(r(t ′
s )) = 0, we fix the occurring integration

constants. Under these assumptions the position of the tunnel
exit ri at time t0 = Re(t ′

s ) is given by (to first order of 1/c)

ri = Re

[(
1 + p̃′

z

c

)
α(t0, ti ) + (ti − t0) p̃′

z

c
A(ti )

]
+ ez

c
Re

(
p̃′ · α(t0, ti ) + 1

2
α2(t0, ti )

)
, (10)

with the integrals α(t, t ′) = ∫ t
t ′ dτ A(τ ) and α2(t, t ′) =∫ t

t ′ dτ A2(τ ). Defining the quantity

v(p̃′, t ) = p̃′ + A(t ) + ez

c

(
p̃′ · A(t ) + 1

2
A2(t )

)
, (11)

which is the velocity of the electron if z = 0, the correspond-
ing initial velocity at the tunnel exit reads (to first order of
1/c)

ṙi = v(p̃′, t0). (12)

The potential-free saddle-point equation for t ′
s is in first order

of 1/c the same as in plain nondipole SFA [58,59]

v2(p̃′, t ′
s )

2
+ Ip = 0. (13)

For the chosen time-integration contour, we can split the
action into a complex-valued part under the barrier that is in
first order of 1/c given by

S0
↓ = Ipt ′

s −
∫ t0

t ′
s

dt
v2(p̃′, t )

2
(14)

and a real-valued part related to the acceleration step

S→ = −
∫ ∞

t0

dt

[
1

2
ṙ2(t ) + V (r(t ))

− r(t ) · ∇V (r(t )) − z(t ) · [ṙ(t ) × B(η(t ))]
]
. (15)
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Since we have chosen the real part of the initial position to
zero at the complex-valued time t ′

s, we neglect the first phase
term in Eq. (9). In contrast to the existing CCSFA beyond-
dipole approximation [49], Eq. (15) recovers the beyond-
dipole SFA action [58–60] in the limit of vanishing binding
potential V . For this purpose, the last term proportional to
the magnetic part of the Lorentz force is important. Since by
construction the trajectory and hence phase S→ are real valued
after the tunnel exit, the ionization probability associated
with a certain trajectory is fully determined by the imaginary
part Im(S0

↓) corresponding to the tunnel motion. For linear
polarization, the distribution of initial velocities is shifted
by ≈Ip/(3c) in propagation direction compared to the dipole
approximation. According to tunneling theory this additional
electron velocity is induced by the action of the magnetic
part of the Lorentz force on the electron during its quantum-
mechanical under-the-barrier motion [61].

Summarizing this part, to calculate the amplitude of ioniza-
tion into a final state with momentum p we take the following
steps: (i) solve nondipole SFA saddle-point equation (13) for
each auxiliary momentum p̃′ and hence establish a connection
between the auxiliary momentum p̃′ and the initial conditions
[compare Eqs. (10) and (12)] for the classical trajectories
of the second step starting at time t0 = Re(t ′

s ); (ii) solve the
classical equations of motion (here done using the Runge-
Kutta-Fehlberg method) to find all possible auxiliary initial
momenta p̃′ leading to a given final momentum p. We only
include the most important kinds of trajectories in our model
such that this inversion problem can be tackled by using
a combination of the multidimensional Newton method and
the conjugate gradient method. (iii) Finally, the transition
amplitude is expressed in terms of these classical trajectories
as

Mp(t f ) ∝ −i
∑

s

C(p̃′, ts)D(r̃, t ′
s )

1√|J| ei(S0
↓+S→ ). (16)

To calculate the Jacobian J in Eq. (16) we consider the
variation of the final momenta p with the auxiliary momentum
p̃′ for fixed value of the exit point and ionization time t ′

s and
denote it as

J = det

[
∂ks(t f )

∂ks(t ′
s )

]
= det

[
∂p
∂p̃′

]
. (17)

If the exit point as well as the time t ′
s are also varied with the

momentum p̃′ according to Eqs. (10) and (13), the calculated
spectra are only weakly changed so that the conclusions of
this paper stay the same. In the actual implementation the
preexponential factor C and the matrix element D(r̃, t ′

s ) =
〈r̃|HI (t ′

s )|ψ0(t ′
s )〉 are neglected. We find that the leading-order

corrections of the tunnel exit compared to dipole approx-
imation have only negligible influence on the observables
discussed below. However, the changed initial velocity distri-
bution and hence the under-the-barrier action of the magnetic
field are important for a successful, quantitative modeling of
the signal strength.

The model that we have introduced in this section incor-
porates quantum effects, including the under-barrier motion,
as well as the effect of the long-range potential. Note that, for
certain aspects of SFPH, simpler modeling can be sufficient.
In particular, we will introduce a Coulomb-free semiclassical

model in Sec. III B to describe the shift of the central holo-
graphic fringe in a 2D situation.

B. Numerical solution of the TDSE

We benchmark our present semiclassical model against
the numerical solution of the single-active electron time-
dependent Schrödinger equation (TDSE) including leading-
order nondipole corrections. We follow the scheme presented
in Ref. [62] such that the theory covers the dynamics within
electric quadrupole and magnetic dipole approximation. Af-
ter application of a unitary transformation to the system in
Coulomb gauge, compare Eqs. (2) and (3), we obtain the nu-
merical solution of the TDSE with a transformed Hamiltonian

H̃ = 1

2

[
p + A(t ) + ez

c

(
p · A(t ) + 1

2
A2(t )

)]2

+ V
(

r − z

c
A(t )

)
, (18)

using the split-operator method on a Cartesian grid [63].
While propagating until the final time, outgoing parts of the
wave function are projected onto beyond-dipole Volkov states
[58] and summed up coherently to obtain the momentum
distribution [64]. Most of the results are calculated in reduced
dimensionality (2D) with a soft-core model potential

V2D(r) = −e−0.575 r + 1√
r2 + 0.75

, (19)

which mimics the helium atom with an ionization potential
of Ip ≈ 0.9 a.u. Selected results are also shown for a more
realistic 3D calculation, where the effective potential is chosen
as by Tong et al. [65], but with the singularity removed using a
pseudopotential [66] for angular momentum l = 0. In 2D, the
size of the numerical inner grid is 819 a.u. in each direction
with spacings of �x = 0.2 a.u., and a time step of �t =
0.01 a.u. is used. After the end of the pulse the simulation
is run for five additional cycles. To obtain the PMD with
high quality at low energies, we remove the localized bound
states with a mask function (r < 30 a.u.) from the final wave
function and project the remaining wave function on eikonal
states

ψ (e)
p (r) = 1

(2π )
d
2

exp

[
i p·r + i

∫ ∞

0
dζ V (r + pζ )

]
. (20)

The momentum-space amplitude obtained from outgoing
wave packets during the time propagation and the parts pro-
jected onto eikonal states are added coherently to obtain the
PMD with a resolution of �px = 0.0038 a.u. and �pz =
0.0019 a.u. In 3D, the size of the numerical inner grid is
358 a.u. in each direction with spacings of �x = 0.35 a.u.,
and a time step of �t = 0.02 a.u. is used. In the plane spanned
by the propagation and polarization direction, the PMD is
obtained after the end of the pulse as in 2D with a resolution
of �px = �pz = 0.0044 a.u.

III. RESULTS AND DISCUSSION

In our simulations we use a few-cycle linearly polarized
laser pulse of np-cycle duration defined in terms of the vector
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potential

A(η) = −E0

ω
sin2

(
ωη

2np

)
sin(ωη) ex, (21)

with a central frequency of ω = 0.0569 a.u. corresponding
to ≈800 nm wavelength. For most calculations we use an
intensity of I = 7.5 × 1014 W/cm2. However, to avoid the
influence of intracycle interferences we additionally calcu-
late “intensity averaged” spectra by summing up the PMDs
corresponding to intensities 7 × 1014, 7.5 × 1014, and 8 ×
1014 W/cm2. Even though we use soft-core potentials with
short-range contributions in the TDSE calculations, we will
use a bare Coulomb potential V (r) = −1/r in the semiclas-
sical calculations but set the ionization potential artificially to
the helium value Ip ≈ 0.9 a.u.

A. Comparison of TDSE and semiclassical results

The photoelectron momentum distribution obtained by
solution of the 2D TDSE for ionization of helium with a
ten-cycle laser pulse is shown in Fig. 1(a). For the used

intensity of 7.5 × 1014 W/cm2 the classical 2Up cutoff for
nonscattered electrons is given by |px| ≈ 2.56 a.u. The whole
PMD is overlaid with ATI rings, i.e., peaks separated by the
photon energy ω, that result from intercycle interferences.
For momenta |p| � 0.6 a.u., pronounced holographic fingers
that are nearly parallel to the polarization axis are visible. In
contrast to the dipole limit, the positions of the minima and
maxima indicated by the white solid lines are not symmetric
with respect to the polarization axis [46,51]. This symmetry
breaking in propagation direction (z direction) is more clearly
visible in 1D slices through the distribution shown in panels
(c) and (d). To suppress the strong oscillations from ATI rings,
the slices are averaged over an interval of �px = 0.1 a.u. In
addition to the shift of the peak positions, which are evident in
panel (d), the emission strengths of the peaks in forward and
backward directions are different; see panel (c).

The ab initio PMD from the 2D TDSE solution can
be interpreted within the semiclassical model introduced
in Sec. II A. As in the saddle-point treatment of plain
SFA, for a given auxiliary momentum p̃′ there is a single
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FIG. 1. (a) Intensity averaged photoelectron momentum distribution w(p) from ionization of helium by a ten-cycle pulse with 800 nm
wavelength and an average intensity of 7.5 × 1014 W/cm2, obtained by 2D TDSE simulation. The white lines are the numerically determined
positions of the holographic interference extrema. (b) Electric field with color-coded half cycles. (c), (d) 1D slices through the 2D distribution
of panel (a) at fixed px: (c) px = 0.75 a.u. and (d) px = 2.0 a.u. (gray solid lines). To expose the nondipole shift and asymmetry, the mirror
images, i.e., 1D slices through w(px, −pz ), are shown additionally (black dashed lines). (e) Comparison of the 1D slice at px = 1.0 a.u.
extracted from 2D TDSE (gray thick curve) to the semiclassical model (on a logarithmic scale): the colors indicate the included number of
branches; compare panel (b). Only trajectories starting in the central half cycle b0 are used for the light blue line; the yellow line additionally
takes the branches b±1 into account and so on. The dashed line corresponds to a calculation where the Jacobian J instead of its square root is
used; see main text for further information.
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saddle-point time t ′
s in every half cycle of the laser pulse. Since

the ionization weight exp[−Im(S0
↓)] depends strongly on the

electrical-field strength and hence ionization time we will only
consider trajectories that start in the vicinity of the maximum
of the pulse envelope; compare the colormarked branches
in Fig. 1(b). For sufficiently long laser pulses the simple
man’s model predicts that trajectories starting in the ascending
quarter cycles of the electric-field strength do not return to the
ionic core and hence are called “direct” electrons. In dipole
approximation the potential-free mapping between the initial
time t0 and the final momentum p is given by p = −A(t0).
Hence, for the half plane with px > 0, trajectories starting in
the colored branches b±1 and b±3 of Fig. 1(b) are only weakly
influenced by the Coulomb potential such that their Jacobian
J is close to unity. On the other hand, trajectories that start in
the descending quarter cycle of the electric-field strength are
accelerated away and back to the parent ion so that they are
influenced by the potential more strongly. In our discussion
we only include forward-scattered electrons since other kinds
of trajectories have much larger Jacobians J and therefore
only affect weakly the SFPH. Under this assumption, the
main part of the holographic interference pattern is formed
as follows. For a given final momentum p there start two
distinct trajectories in each of the colored branches b0 and
b±2 of Fig. 1(b): one passing the parent ion with z < 0 and
the other with z > 0. The interference of two such trajectories
starting in the same quarter cycle (sometimes termed as type A
holographic interference) leads to holographic fingers [9,67],
which are nicely visible in a slice through the distribution at
px = 1.0 a.u. shown in Fig. 1(e). Already a calculation that
takes only trajectories from the central branch b0 into account
reproduces the correct number of fringes and also their posi-
tions well. However, for a good agreement of the modulation
depth the yellow branches b±1 of “direct” electrons have to
be considered. Adding more branches only weakly affects
the spectrum for |px| � 0.5 a.u. but leads to a complicated
interference structure at low energies.

Instead of solving the inversion problem, we can also cal-
culate semiclassical PMDs by using the shooting method, i.e.,
a Monte Carlo algorithm is used to sample a large number of
trajectories corresponding to the possible auxiliary momenta
p̃′ and finally the probability is obtained by binning (see
Refs. [37,49] for a detailed discussion). As expected for the
same initial conditions the resulting PMDs are (in the relevant
momentum region) in agreement with Eq. (16), if the Jacobian
J is used in Eq. (16) instead of its square root. This shows
that all relevant branches have been included in the presented
calculations using the inversion method. However, while our
semiclassical model closely matches the TDSE holographic
pattern and reproduces quantitatively the signal strength at
larger transverse momenta |pz|, the shooting-method results
decrease asymptotically too fast; see Fig. 1(e).

B. Central holographic fringe without Coulomb focusing

In two-dimensional dynamics and also for short-range po-
tentials in three dimensions, Coulomb focusing is absent. As
pointed out above, in these cases the central holographic finger
is “shaped” out of the classical distribution by the constructive
interference between forward scattered trajectories starting

in the same quarter cycle. We have found nearly the same
dependence of the nondipole shift on the momentum px for
these two settings (not shown). This indicates that in con-
trast to recent studies [46,49,50] the nondipole modifications
of the classical distribution cannot provide a complete and
consistent interpretation of the momentum-dependent shift of
the central maximum. In order to gain understanding of the
influence of nondipole effects on the holographic interference,
we first present the simplest possible model that allows an
analytical treatment and offers a qualitative interpretation of
the nondipole shifts. To this end we extend our classical model
originally introduced in Refs. [58,62] for high-order above-
threshold ionization to the case of photoelectron holography.
We follow the ideas reported in Refs. [9,10] and analyze
the interference between a nonscattered reference wave and
a scattered signal wave but include leading-order nondipole
effects properly. The model presented in this section can be
understood as a simplified model where we, unlike the semi-
classical model of Sec. III A, neglect the Coulomb potential
and use simplified initial conditions. We refer to this model as
the simple man’s model.

After the ionization has launched an electron at the release
time t0 with an initial velocity v0 ⊥ ex, the potential-free
acceleration of the electron is described classically by New-
ton’s equation. In leading order of 1/c we find a conserved
canonical momentum of

p̃′ = −A(t0) + A2(t0)

2c
ez + v0 (22)

in the transformed system defined by the Hamiltonian of
Eq. (18) without potential. In this model, the reference wave
does not interact with the ionic potential and goes directly
to the detector. Its canonical momentum p̃′ is conserved and
the mapping between the final momentum p and the initial
time t ref

0 is given by Eq. (22). Using Eq. (15) the associated
semiclassical phase is in leading order of 1/c given by

Sref = −
∫ ∞

t ref
0

dt
v2(p, t )

2
(23)

with the wave vector v of Eq. (11). On the other hand,
the signal wave packet scatters off the parent ion. Since the
magnetic part of the Lorentz force causes a drift motion of
the electron in propagation direction, for an exact return to
the initial position r = 0 at the recollision time tr the electron
has to start with an initial velocity v0 = −|v0|ez against the
propagation direction of the light [59]:

v0,z = − 1

2c
(
tr − t sig

0

) ∫ tr

t sig
0

dτ
[
A(τ ) − A

(
t sig
0

)]2
. (24)

The recollision time tr can be found from the return condition
in polarization direction, x(t sig

0 ) = x(tr ), that is the same as
in the dipole limit. During the scattering the electron feels
the potential and its canonical momentum changes from p̃′

of Eq. (22) to the final momentum p. For fixed times t sig
0 , tr

the energy conservation during rescattering implies that the
possible outgoing velocities v(p, tr ) after the scattering lie
on a circle of radius K (t sig

0 , tr ) ≈ |A(tr ) − A(t sig
0 )| that is in

leading order of 1/c the same as in the dipole approximation
[62]. After the recollision the second acceleration stage maps
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the outgoing velocity to the final velocity that is equal to the
canonical momentum p. Therefore, the phase of the signal
electron is given by

Ssig = −
∫ tr

t sig
0

dt
v2(p̃′, t )

2
−

∫ ∞

tr

dt
v2(p, t )

2
. (25)

The interference pattern is determined by the acquired phase
difference between the reference and the signal wave packets
that reads as

�S =
∫ tr

t ref
0

dt
v2(p, t )

2
−

∫ tr

t sig
0

dt
v2(p̃′, t )

2
. (26)

The holographic fingers are caused by interference of tra-
jectories starting in the same quarter cycle of the field such
that (close to the polarization axis) the starting times of the
signal and reference waves, t sig

0 and t ref
0 , are quite similar. For

this type of interference the z component of the first term of
Eq. (26) can be identified as the dominant term such that in
first order of 1/c we can approximate

�S ≈
∫ tr

t ref
0

dt

[
p2

z

2
+ pz

c

(
p · A(t ) + 1

2
A2(t )

)]
. (27)

In dipole approximation, the positions of the extrema are
determined by the first term of Eq. (27). Since the nondipole
shifts are of the order of 1/c and we concentrate on the holo-
graphic fingers close to the polarization axis, we assume the
same initial and return times as in dipole approximation. The
positions of the holographic maxima are prescribed by points
of constructive interference in Eq. (26): �S = 2πn with n ∈
Z. The central finger corresponds to forward scattering, i.e.,
p̃′ = p, so that (in this simple man’s picture) the signal and the
reference trajectory are equivalent. As a result, the position of
the central lobe is determined by the interplay between needed
initial velocity v0 and the momentum A2(t sig

0 )/(2c) transferred
from the electromagnetic field to the electron during its ac-
celeration. We find that the zero of the phase difference �S
of Eq. (26) is at the same position as its minimum which
leads us to calculate the shift by minimizing the simplified
expression (27). On the other hand, to estimate the positions of
the higher-order extrema we expand the approximated phase
difference of Eq. (27) in first order of 1/c around the dipole
position pdip

z using pz = pdip
z + �pz and solve analytically the

resulting equation for the shift �pz. Under these assumptions,
we find for the central lobe as well as all side lobes in first
order of 1/c the same form of the shift

�pz ≈ −1

c

1

tr − t ref
0

∫ tr

t ref
0

dt

(
p · A(t ) + 1

2
A2(t )

)
. (28)

Close to the classical cutoff px ≈ −Ax(t ref
0 ) ≈ E0/ω; the ex-

cursion time tr − t sig
0 ≈ tr − t ref

0 of the electron and the corre-
sponding initial velocity v0 of Eq. (24) approach zero so that
the shift of Eq. (28) simplifies �pz ≈ A2(t0)/(2c) = p2

x/(2c).
Hence the shift is fully determined by the acceleration stage
and it is the same as in the simple man’s model for direct
ionization; compare Eq. (22). On the other hand, for low
momenta px ≈ 0 the formula predicts negative values that can
be estimated by �pz ∝ −Up/c for long laser pulses. Since
low-energy electrons dominate the position of the maximum
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FIG. 2. Shift of the central holographic finger extracted from 2D
TDSE simulations (solid lines). (a) Results for various intensities,
given in the legend in units of 1014 W/cm2, for a two-cycle pulse
with 800 nm wavelength. The intensity increases from top curve to
bottom curve. (b) Intensity-averaged result for a ten-cycle pulse; see
Fig. 1. The TDSE results are compared to the simple man’s model
result given by Eq. (28) (colored dashed lines). The gray thick dotted
line represents the classical estimate assuming “direct” ionization:
�pz = p2

x/(2c); see Eq. (22) with v0 = 0.

of the lateral distributions integrated over px, we can explain
the linear scaling of the backward shift with intensity as
observed in Ref. [46] for the solution of the 2D TDSE at 3400
nm wavelength.

To obtain a reliable numerical value that quantifies the
shift of the central fringe for TDSE results, we first average
the PMDs over an interval of �px = 0.1 a.u. to suppress the
influence of ATI peaks. Afterwards we perform Gaussian fits
to the central region with |pz| < 0.02 a.u. at each longitudinal
momentum px from which the position of the maximum is
calculated. For very short two-cycle pulses where classically
the electrons can undergo only a single forward scattering, the
simple formula of Eq. (28) predicts perfectly the momentum-
dependent shift of the central finger for different intensities;
see Fig. 2(a). For this special pulse shape the rescattering
electrons with small final momenta px recollide after the end
of the laser pulse. Hence the denominator of Eq. (28) becomes
large, so that the shift is small at low energies. In long laser
pulses, the agreement between our simple model and the
TDSE is still good for high energies; see Fig. 2(b). At low en-
ergies, however, higher-order rescatterings become important
[5,27,68], which also modify the nondipole dynamics [50] but
are not incorporated in our simple model. Here, the semiclas-
sical model developed in Sec. II A can provide a quantitative
interpretation of the shift; see Fig. 3(a). The TDSE as well
as the semiclassical model (in 2D) predicts a minimal shift
at px ≈ 0.45 a.u. For larger longitudinal momenta px only
a single recollision exists and the agreement between the
semiclassical model and the TDSE calculation is perfect. On
the other hand, for small px the shift goes to zero which has
been classically attributed to multiple recollisions [50].

While our semiclassical model agrees quantitatively with
the TDSE result, the earlier proposed CCSFA beyond the
dipole approximation [49] overestimates the magnitude of
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FIG. 3. Comparison of the shift of the central maximum obtained
by different stages of theory under the conditions as in Fig. 1. The
position of the maximum extracted from TDSE simulations in 2D
and 3D are given by thick gray solid and dashed lines, respectively.
The position of the maximum of our semiclassical model in 2D
including the branches b0, b±1 is shown as black solid line and
the corresponding (numerically determined) point of constructive
interference (POCI) for the two trajectories starting in branch b0 as
blue dashed line. The light blue dashed-dotted line corresponds to
the maximum of the classical CTMC distribution in 2D, whereas
the red long-dashed line belongs to the position of the (numerically
determined) 3D caustic. The maximum of the glory model δpz is
given by the green dashed-dotted line.

the shift, which is caused by the different phase in CCSFA
that can be obtained from Eq. (15) by omitting the terms
−r · ∇V (r) and −z · (ṙ × B) in the integrand. In additional
calculations (not shown) we found that both terms are impor-
tant for the good agreement of our model. If we neglect the
phase and use the classical trajectory Monte Carlo (CTMC)
distribution in 2D, we obtain a much too broad maximum
whose position cannot quantitatively reproduce the TDSE
results. Hence, in contrast to the statements in Refs. [46,49],
in 2D the position of the central lobe cannot be explained by
the nondipole modifications of the classical trajectories alone.
Instead, the point of constructive interference (POCI) of the
two trajectories of branch b0 determines the position of the
central lobe; see Fig. 3(b). Compared to the simple man’s
model their phase difference in the semiclassical model varies
linearly around the position of the central maximum and has
a first-order zero. The small difference between the POCI and
shift of the full semiclassical calculation is mostly caused by
the presence of “direct” electrons starting in branches b±1.
The saddle-point treatment of nondipole SFA shows that in
recollision-free ionization with linearly polarized fields the
lateral distributions are approximately shifted in propaga-
tion direction by �pz = p2

x/(2c) + Ip/(3c) [42]. Hence the

position of the maximum of the complete distribution is
slightly shifted to larger pz compared to the POCI.

C. Central holographic fringe with Coulomb focusing

In three dimensions, the two-path interference introduced
above still determines the holographic finger pattern for large
lateral momenta p⊥. Near the polarization axis, however, the
picture is modified by Coulomb focusing. In dipole approx-
imation, the cylindrical symmetry implies that on the polar-
ization axis an infinite number of distinct classical trajectories
lead to the same final momentum p. In this picture, a circle
of initial transverse velocities at the tunnel exit is mapped to
one point in the final momentum distribution such that in the
dipole limit an axial caustic singularity emerges, characterized
by a vanishing Jacobian J of Eq. (17). Hence the PMD scales
with 1/p⊥ close to the polarization axis. Even beyond the
dipole approximation, Maurer et al. and Daněk et al. [45,50]
observed a divergent caustic structure close to the polarization
axis. In the space of auxiliary momenta p̃′ the zeros of the
Jacobian J form a tube that is shifted against the light propaga-
tion direction (compared to the rotationally symmetric dipole
limit) to compensate the magnetically induced drift motion;
compare Eq. (24). In contrast to the dipole approximation, for
a given final longitudinal momentum px the classical mapping
leads to a complicated one-dimensional manifold of final
transverse momenta {py, pz} with corresponding vanishing
Jacobian J; see Fig. 4(b). However, since the width of this
structure scales in leading order with 1/c2, it is negligible in
the weakly relativistic region, even though it changes the type
of the caustic.

The position of the classical caustic has been estimated in
an analytical model in Refs. [45,50]. Interestingly, assuming
only a single recollision of the electron, their result is the same
as our position of the central maximum estimated within the
simple man’s model of Eq. (28). Indeed in our semiclassical
calculations the phases associated with the different trajecto-
ries corresponding to the caustic show only a minor variation
for fixed momentum px. Hence we find numerically in the
semiclassical model that the point of constructive interference
(POCI) in 2D and the center of the classical caustic in 3D
do not coincide exactly. Nevertheless, for all used laser pa-
rameters and target atoms both positions are quite close; see
Fig. 3(b). We want to emphasize that their difference scales in
leading order with 1/c so that even in the weakly relativistic
regime they are not exactly the same.

In the derivation of our semiclassical model, we used the
semiclassical approximation of the propagator 〈p|U (t f , t ′)|r̃〉
that is based on a stationary-phase approximation to the corre-
sponding path integral. The critical “points” of the action are
the solutions of the classical equations of motion. The second
“variation” of the action is related to the Jacobian J of the
system such that a vanishing Jacobian J and the appearance
of caustics indicate the breakdown of the semiclassical ap-
proximation [23,69]. Recently, a regularization procedure has
been applied to Coulomb focusing in strong-field ionization
in dipole approximation [24]. There, the similarity of laser-
induced rescattering to glory scattering [70] is used and an
analogous procedure as worked out in Ref. [71] is applied to
obtain finite spectral weights close to the classical singularity.

023413-8



STRONG-FIELD PHOTOELECTRON HOLOGRAPHY BEYOND … PHYSICAL REVIEW A 100, 023413 (2019)
y 

(a
.u

.)

z (a.u.)

−10

−5

0

5

10

−10 −5 0 5 10

 0

 0.05

 0.1

 0.15

(a)(b) (c)

(d)

S
~

 (a.u.)
0 0.15 0.3

(a)(b) (c)

(d)

z 
(a

.u
.)

px (a.u.)

−30

−15

0

15

30

0 0.5 1 1.5 2 2.5

(a)(b) (c)

(d)

p y
pz

(a)(b) (c)

(d)

FIG. 4. (a) Transformed phase S̃ of Eq. (32) in y-z space for
fixed px = 1.5 a.u. at the end of the laser pulse (shifted to S̃ = 0
at the minimum). The red line indicates the positions of trajectories
with vanishing Jacobian J that correspond to the caustic structure in
final-momentum space shown schematically in the inset (b). (c) Slice
through the phase map S̃ of Eq. (32) for fixed z = z0

px
. The light

blue line corresponds to the branch shown in panel (a), whereas
the dark violet line represents the other important branch for the
formation of holographic fingers. (d) Slice at y = 0 through the tube
with vanishing Jacobian J in mixed-coordinate representation (solid
lines) where the dashed line indicates the center of the tube.

The main idea is that even though the semiclassical approxi-
mation of the propagator 〈p|U (t f , t ′)|r̃〉 is singular for certain
trajectories, the semiclassical approximation of the propagator
〈r|U (t f , t ′)|r̃〉 can be finite for the same trajectories [72].
Hence, instead of directly calculating the amplitude Mp(t f ),
we first determine the position representation of the outgoing
photoelectron wave packet Mr(t f ) by using the semiclassical
approximation and afterwards apply a Fourier transformation
to obtain the PMD:

Mp(t f ) = 1

(2π )3/2

∫
dr Mr(t f )e−ip·r. (29)

In the semiclassical treatment of Mr(t f ) we find, similar as
with Mp(t f ), for each position r two relevant trajectories that
start in the central half cycle b0. For final y > 0 and small z,
one trajectory passes the parent ion in the range y > 0, corre-
sponding to the light blue curve in Fig. 4(c), and the other in
the range y < 0, corresponding to the violet curve. If we apply
the steepest-descent method to integrals over r in Eq. (29), we
retrieve our divergent semiclassical model of Eq. (16). It is
still valid to apply the saddle-point method to the x integration.
However, the remaining integrals have to be treated more
carefully. To this end, we will change coordinates such that
also in the nondipole regime the integrand of Eq. (29) has an

approximate rotational symmetry and resulting integrals can
be simplified analytically.

We find numerically that for a given finite final time t f

and fixed px, the trajectories with vanishing Jacobian J of
Eq. (17) [whose final momenta p belong to the complicated
structure shown in Fig. 4(b)] form approximately in the y-z
plane a circle with radius r0

px
and with its center shifted in

propagation direction to z0
px

; see the red line in Fig. 4(a). A
slice at y = 0 through this tube is shown in Fig. 4(d) as a
function of px to illustrate the momentum dependence of the
center shift z0

px
. Hence, for each px, we shift the origin of our

coordinate system to the center of the circle z0
px

and introduce
polar coordinates r, φ:

y = r sin(φ) = y′, z = z0
px

+ r cos(φ) = z0
px

+ z′. (30)

In addition, we write the final momenta as

py = p′
y, pz = p′

z + δpz. (31)

Originating from the phase of Eq. (9) we define a new phase

S̃ = Re(S0
↓) + S→ + ks(t f ) · [ys(t f ) + zs(t f )] − δpzz

′, (32)

which determines classically the associated momentum field
[72], e.g., p′

y = ∂ S̃/∂y′. Since we are interested in small lateral

momenta p′ =
√

p′2
y + p′2

z , this motivates us to take only the

branch with a minimum of S̃ into account; see Fig. 4(c). Using
Fourier analysis we can choose δpz such that the phase S̃ is
nearly constant for fixed r as shown in panel (a) of Fig. 4.
The remaining phase variation at constant r = r0

px
is smaller

that 10−3. Under these assumptions, the electron amplitude of
Eq. (29) can be simplified to

Mp(t f ) ∝
∫

dr r
∫

dφ P(px, r, φ) eiS̃e−i(p′
yy′+p′

zz′ ), (33)

where the prefactor P contains all remaining real-valued com-
ponents such as the ionization weights. Since for radii close
to r0

px
the prefactor P of Eq. (33) is also only weakly angle

dependent, the φ integration of the last plane-wave factor of
Eq. (33) is proportional to the zeroth-order Bessel function
J0(r p′). For small p′ the r integration can be carried out by
saddle-point approximation which leads to the glory condition
for the impact parameter rg

∂ S̃(r)

∂r

∣∣∣∣
r=rg

= 0. (34)

The resulting glory impact parameter rg is nearly the same
as the radius r0

px
, schematically illustrated in Fig. 4(a). We

want to emphasize that the above derivation is only applicable
close to the position of the maximum: (i) for larger transverse
momenta p′ the other branch of trajectories is non-negligible;
(ii) around z ≈ z0

px
the prefactor P is singular which has to be

treated properly for larger p′.
The central maximum in the PMD in 3D is dominated by

the quantum interference of an infinite number of semiclassi-
cal paths that give rise to a pattern of

w(p) ∝ rgJ2
0

(
rg

√
p2

y + (pz − δpz )2
)
e−2 Im(S0

↓ ). (35)

As a result, the position of the maximum is simply given
by δpz. The predicted px dependence of this shift is nearly
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the same as for the position of the caustic as well as the
semiclassical POCI in 2D; see Fig. 3(b). For momenta lower
than px ≈ 0.45 a.u., these theories agree perfectly with the
exact result extracted from a slice with fixed py = 0 through
the 3D PMD obtained by numerical solution of the TDSE for
helium. Similar as in the 2D results, the deviations around
px ≈ 0.8 a.u. are caused by “direct” electrons from branches
b±1 (those that do not turn around on their way out). Since in
3D the Coulomb-focused maximum is flatter than in 2D, the
“direct” electrons influence the position of the maximum more
strongly. In contrast to the position of the classical caustic, this
effect can be seen in the glory model with its finite spectral
weight (not shown).

D. Higher-order holographic fringes

Going to larger final lateral momenta pz the two inter-
fering trajectories of the semiclassical model in 2D become
inequivalent in the sense that one is only weakly perturbed by
the potential, whereas the other is strongly deflected. Hence
the simple man’s model with one signal and one reference
beam becomes applicable and the interpretation of the results
is easier. However, the identification of the positions of the
extrema in distributions from TDSE or semiclassical calcula-
tions requires care. To this end, we use the smoothed PMDs
and perform at each px a Gaussian fit in the region around a
maximum to determine its position. For each order, the shift
of the maxima is quantified by

�pz(px ) = p+
z + p−

z

2
, (36)

where p+
z and p−

z are the positions of one maximum in forward
direction and one in backward direction, respectively. The
extracted shift is then averaged over the ATI peaks to obtain
the shown results. In Fig. 5(a) the momentum shifts �pz

of the first- and second-order maxima extracted from 2D
TDSE calculations are compared to the numerically obtained
positions of the semiclassical model and the simple man’s
model of Eq. (28). The shift is nearly independent of the order
of the holographic fringes and hence in the shown momentum
region they are similar to the shift of the central maximum.
This implies that, for small px, backward shifts are observed.
All levels of theory are in good agreement, which indicates
that the shift of the extrema can be entirely attributed to
the phase difference between signal and reference trajectory
starting in branch b0.

On the other hand, the forward-backward asymmetry is
quantified at each px by taking the ratio of the signals of
one interference maximum in forward direction and one in
backward direction. In the relevant momentum region the
2D TDSE calculation shows always ratios larger than unity
indicating stronger emission in forward than in backward
direction; see Fig. 5(b). The TDSE as well as semiclassical
results show for high energies a stronger asymmetry for lower
interference orders. However, when going to smaller px this
changes such that around px ≈ 0.8 a.u. the asymmetry of
the second-order maxima reaches values as high as ≈1.17.
In the semiclassical calculation already the two dominating
trajectories starting in branch b0 can quantitatively reproduce
the asymmetry of the first interference orders. In addition, we

−10

−5

0

5

10

15

20

0.5 1 1.5 2 2.5

Δ  
p z

 (
10

−
3  a

.u
.)

px (a.u.)

first−order maxima
second−order maxima

(a)

(b)

 1

 1.05

 1.1

 1.15

 1.2

0.5 1 1.5 2 2.5

ra
tio

px (a.u.)

first−order maxima
second−order maxima

(a)

(b)

FIG. 5. Results for the first-order (dark red lines) and second-
order (light blue lines) maxima. (a) Shift of the holographic fringes.
(b) Forward-backward asymmetry quantified as the ratio of the
signal strengths of the interference peaks. Solid lines, numerical
TDSE results; dashed thin lines, results from the semiclassical model
including only trajectories starting in branch b0; gray long-dashed
line, simple man’s model given by Eq. (28) and dashed-dotted line
semiclassical calculation using the Jacobian J instead of its square
root.

find that including trajectories from branches b±1 improves
slightly the agreement for the second orders for intermediate
momenta px (not shown). By using the Jacobian in Eq. (16)
instead of its square root we can change the “cross section”
used in the model and we find that the correct implementation
is important for a quantitative modeling; see the dashed-
dotted line in Fig. 5(b). In comparison with high-order above
threshold ionization (HATI) [58] we think that in the simple
man’s picture the asymmetry can be understood with the help
of the z component of the incoming velocity shortly before
rescattering and hence a rotated cross section compared to the
symmetric dipole limit. However, in SFPH the recollision is
much softer than in HATI so that the simple assumption of one
hard rescattering event is not justified. For example, in con-
trast to HATI the distribution of initial velocities at the tunnel
exit influences the asymmetry. If we take the distribution in
dipole approximation and hence neglect the action of the laser
magnetic field on the electron during its under-the-barrier
motion [61], we find that the asymmetry ratios decrease
by ≈0.03 for the first-order holographic maxima. Close to
the classical 2Up cutoff, our semiclassical description using
Coulomb-free trajectories during the under-the-barrier motion
fails so that the spectral weight is not modeled correctly [73]
and the asymmetry decreases too fast.

The nondipole shift of the fringes scales quadratically with
the electric-field strength E0 and the wavelength λ (assuming
that the momentum px is scaled naturally as px ∝ E0λ). On
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FIG. 6. (a) Smoothed photoelectron momentum distribution
from ionization of a 2D soft-core hydrogen model
V = −1/

√
r2 + 0.64 by a three-cycle pulse with 3400 nm and

an intensity of 5 × 1013 W/cm2. (b) Corresponding normalized
difference; see Eq. (37).

the one hand, the spacing of the holographic interference
fringes decreases with increasing wavelength. Even though
it is well known that Coulomb effects influence strongly the
exact positions of the fringes, we can estimate the wavelength
dependence of the fringe spacing by the simple man’s model
as ∝λ−1/2 for fixed interference order. On the other hand,
for sufficiently long wavelength the excursion time tr − t sig

0
of the signal electron and hence the fringe spacing is nearly
independent of the field strength E0 [3]. As a result for strong
midinfrared laser pulses as often used in today’s experiments,
the nondipole shift and the fringe spacing are in the same order
of magnitude; see the momentum distribution in Fig. 6(a). In
this parameter region, the huge influence of nondipole effects
can be beautifully seen in the normalized difference

ND = w(px, pz ) − w(px,−pz )

w(px, pz ) + w(px,−pz )
, (37)

that would be zero for symmetric spectra (as obtained in
dipole approximation). In Fig. 6(b) a high contrast is observed
for midinfrared laser pulses with λ = 3400 nm at a mod-
erate intensity of I = 5 × 1013 W/cm2. This is a clear and

easily observable signature of nondipole effects in strong-field
ionization.

IV. CONCLUSIONS AND OUTLOOK

We have investigated strong-field photoelectron hologra-
phy beyond the electric dipole approximation. To obtain ref-
erence photoelectron momentum distributions we have solved
the TDSE in 2D and 3D including leading-order nondipole
corrections. In agreement with previous works [46,49] we
have found that the holographic interference fingers are
shifted in propagation direction of the light: for low momenta
px in backward and for high momenta px in forward direction.
The nondipole shift of the fringes becomes more pronounced
with increasing laser intensity and wavelength such that for re-
alistic laser midinfrared light sources the normalized forward-
backward difference shows an astonishingly high contrast.
The overall px dependence of the shift can be explained in a
simple man’s model based on the three-step model but taking
into account the interference between a reference and signal
wave.

In order to calculate the nondipole modifications of the in-
terference pattern in the presence of the long-range Coulomb
potential, we have developed a semiclassical model based on
the semiclassical approximation of the quantum-mechanical
propagator. Compared to other models in dipole approxima-
tion [37,38], an additional term in the semiclassical phase
appears that is important for full agreement with the numerical
solution of the TDSE. Inspired by the models in Refs. [34,38],
the initial conditions of the classical trajectories and the
associated ionization weights are taken from nondipole SFA
calculations in saddle-point approximation. Hence the action
of the magnetic field during the tunnel motion [42,61] is
included correctly. The resulting model can be used to study
quantitatively the interplay between nondipole effects and
the Coulomb potential in various laser field geometries, e.g.,
for different ellipticity or in two-color fields. This paves the
way for accurate calculations of PMDs from ionization in
midinfrared fields such as those used in Refs. [44,45].

In contrast to 2D systems, where the two-path interference
dominates the whole holographic pattern, in real 3D systems,
Coulomb focusing plays an important role close to the po-
larization axis so that a caustic arises in the semiclassical
calculation. We have resolved this unphysical structure by ex-
tending the glory rescattering approach [24] beyond the dipole
approximation. This approach shows that in 3D the (nearly)
constructive inference of an infinite number of semiclassical
path leads to the pronounced and broad central maximum and
it explains the observed shift in propagation direction.
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L. Gallmann, M. Klaiber, K. Z. Hatsagortsyan, C. H. Keitel, and
U. Keller, Probing the ionization wave packet and recollision
dynamics with an elliptically polarized strong laser field in the
nondipole regime, Phys. Rev. A 97, 013404 (2018).

[46] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Photon-
momentum transfer in multiphoton ionization and in time-
resolved holography with photoelectrons, Phys. Rev. A 92,
051401(R) (2015).

[47] I. A. Ivanov, J. Dubau, and K. T. Kim, Nondipole effects in
strong-field ionization, Phys. Rev. A 94, 033405 (2016).

[48] J. F. Tao, Q. Z. Xia, J. Cai, L. B. Fu, and J. Liu, Coulomb
rescattering in nondipole interaction of atoms with intense laser
fields, Phys. Rev. A 95, 011402(R) (2017).

[49] Th. Keil and D. Bauer, Coulomb-corrected strong-field quan-
tum trajectories beyond dipole approximation, J. Phys. B 50,
194002 (2017).
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