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Abstract.

We present a non-adiabatic approach to transfer a quantum state between different

superpositions of the eigenstates within a degenerate subspace, namely between

eigenstates of various spatial orientations, while avoiding excitation. This is achieved

by inducing different accumulated dynamical phases for the left- and right-rotating

components of the state, in analogy with optical rotation. The control of the dynamical

phase is based on the asymmetric Floquet energy shift induced by a monochromatic

circularly polarized external laser field. In contrast to adiabatic control methods

demanding an extremely slowly varying carrier wave of the laser field for excitation-

free control, our approach requires only moderately slow variation in the envelope.

This methodology promises fast quantum-state manipulation and control of electron

dynamics in biological and chemical reactions.
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1. INTRODUCTION

The physics of controlling quantum states in quantum systems has received extensive

attention in recent years, leading to numerous theoretical and experimental studies

[1–18]. It plays an important role in quantum information science [19–27], quantum

computing [28–37], and quantum communication [38–45]. A concomitant problem

in quantum-state manipulation is excitation. The increase in excitation density can

introduce disturbances, such as decoherence or noise, that interfere with the preparation

and manipulation of quantum states, ultimately degrading the performance of quantum

devices across various applications. To avoid this problem, adiabatic control is a possible

way. The adiabatic process is slow enough so that the system remains always in an

eigenstate of the time-dependent Hamiltonian, and thus there will be no excitation.

However, the time required for this process will often be very long. A long time is

detrimental, as it can also imply decoherence, accumulation of errors and perturbations,

or even the escape of the system from its confinement. Moreover, with shorter process

times, experiments could be repeated more often to increase signal-to-noise ratios.

Therefore, there are ongoing efforts to achieve excitation-free quantum manipulation

in a short time. A specific idea is to reach the final results of a slow adiabatic evolution

through a shorter route. Consequently, the concept of “shortcuts to adiabaticity”

(STA) was put forward [8] and various methods have been developed, such as the

counterdiabatic or transitionless tracking approach [46], fast-forward approach [47, 48],

alternative shortcuts through unitary transformations [49], and optimal control theory

[50].

In quantum mechanics, it requires a much longer operation time to achieve

adiabaticity when two or more degenerate states are involved. This is often the case

when the parameters of the operation change in two dimensions rather than in one

dimension. For a quantum system in an external laser field, for example, a linearly

polarized driving field usually couples states of different energy, i.e., no degeneracies

are involved. By contrast, a two-dimensional (2D) driving field will also couple the

degenerate states at the same energy with different spatial orientations. We present

a simple demonstration in the Appendix for clarity. The much longer time required

with degenerate states can be understood as follows: Intuitively, an adiabatic process

requires that the time scale for the parameter change, τ = 2π/ω, is much larger than

2π/∆E , with ω being the angular frequency of the driving field and ∆E being the

difference in energy eigenvalues of the involved states. Namely, it requires ω ≪ ∆E
(atomic units are used throughout this manuscript), although we note that strictly

speaking the adiabaticity criterion is a much more complicated question [51–55]. When

no degenerates states are involved, ω needs to be much smaller than the gap of different

energy levels. However, when degenerate states are coupled, ω should be smaller than

the difference between the shifted energies of the degenerate states after the degeneracy

is lifted. Apparently, this requires a much smaller ω and thus a much longer driving

period of the laser. Moreover, it is found that, if the external field crosses zero, the
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process will converge to adiabaticity with decreasing of ω in a slower manner [51], adding

to the requirement of a long operating time scale. Hence, developing a rapid method

that overcomes the constraints of adiabatic conditions to transfer quantum states within

the degenerate subspace is important for fields such as quantum control and quantum

computation. Notably, different quantum states within the degenerate subspace exhibit

different spatial orientations. The orientation of quantum states plays a critical role

in microscopic dynamics such as chemical reactions and strong-field processes [11, 56].

Consequently, such control mechanisms are of paramount significance for manipulating

the physical dynamics on ultrafast timescales.

In this work, we propose an excitation-free method that can manipulate quantum

states in the degenerate subspace much faster than adiabatic processes, by using

monochromatic circularly polarized light. The strategy is based on manipulating the

dynamical phase of left- and right-rotating components of the state, owing to the

asymmetric Floquet energy shifts of the components in the circularly polarized field.

The scheme is numerically demonstrated by ab initio simulations and analyzed using

Floquet theory. Our results show that excitation can be avoided with a driving pulse of

only a few optical cycles. Besides, by adjusting the field parameters the final state can

be freely adapted as required.

The paper is arranged as follows: In section 2 we briefly present the basic

concept and theoretical framework. In section 3 and section 4, the numerical result is

presented and we provide a detailed explanation of the mechanism behind this physical

phenomenon. Finally, we summarize our findings in section 5.

2. Basic Concept

We consider an eigenstate of a quantum system, which has two degenerate states

corresponding to the freedom of spatial orientation, as the initial state. We label the

initial state as |ψx⟩ and the degenerate state coupled by the 2D external laser field as

|ψy⟩. The subscripts x and y indicate that the two eigenstates have different spatial

distributions. If we redistribute the population between |ψx⟩ and |ψy⟩, the finally

obtained superposition of them cos ξ |ψx⟩ + sin ξ |ψy⟩ is an eigenstate of the system,

too, with the same eigenvalue and a different spatial distribution. Here, we choose ξ

as real-valued and we write the coefficients as cos ξ and sin ξ, because we consider the

excitation-free control of the quantum state (cos2 ξ + sin2 ξ = 1).

One can consider an alternative set of basis set via the transformation

|ψ+⟩ =
1√
2
(|ψx⟩+ i |ψy⟩), (1)

|ψ−⟩ =
1√
2
(|ψx⟩ − i |ψy⟩). (2)

|ψ+⟩ and |ψ−⟩ are complex states with nonzero angular momenta and will be termed as

left- and right-rotating states, respectively.
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The initial state |ψx⟩ can be written as a superposition of |ψ±⟩

|ψx⟩ =
1√
2
(|ψ+⟩+ |ψ−⟩), (3)

and also |ψy⟩ = 1√
2i
(|ψ+⟩ − |ψ−⟩). Therefore, any superposed state after the population

redistribution can be written as:

cos ξ |ψx⟩+ sin ξ |ψy⟩ =
1√
2
(|ψ+⟩ e−iξ + |ψ−⟩ eiξ)

=
e−iξ

√
2
(|ψ+⟩+ |ψ−⟩ ei2ξ) (4)

Equation (4) constitutes a pivotal conclusion of this study: the excitation-free

population transfer between real eigenstates |ψx,y⟩ with real coefficients is equivalent

to controlling the relative phase between the complex states |ψ±⟩.
Hence, the next question is how to control the relative phases of the states without

excitation. We will show that this can be achieved via Floquet engineering the energy

level with a circularly polarized laser field. According to the Floquet theorem, with a

time-dependent Hamiltonian H(t) = H(t+ T ) that is periodic with period T , the time-

dependent Schrödinger equation (TDSE) has solutions of the form |ψ(t)⟩ = e−iEF t |P (t)⟩
with |P (t)⟩ = |P (t+ T )⟩ known as Floquet states or dressed states. EF is called the

quasienergy. EF and |P (t)⟩ satisfy the Floquet equation

(H − i∂/∂t) |P ⟩ = EF |P ⟩ . (5)

In our case, the period of the Hamiltonian is the period of the laser field, namely

T = 2π/ω. The shift of EF compared to the energy for zero external field can be

understood as the laser-dressing effect. In practice, the driving laser field has an envelope

f(t). If the initial state is a Floquet state and as long as the variation of the envelope is

modest, the time-dependent state can be expressed as one Floquet state at each time.

This leads to two consequences. First, the phase shift of the dressed state after the

laser-matter interaction is

φ = −
∫
pulse

EF (t)dt. (6)

The integration is performed over the duration of the laser pulse. EF (t) can be time-

dependent due to the variation of the envelope, and it is determined from the Floquet

equation Eq. (5), where the amplitude of the laser-interaction term in H is determined

by f(t). Second, at the end of the laser pulse, the laser-dressed state becomes the

Floquet state with zero external field. This state is the same as the initial Floquet state

before the start of the pulse except for a phase shift according to Eq. (6). In essence,

we have shown that Floquet engineering of the quantum system provides a method to

control the phase of the state without excitation. Our discussion below will demonstrate

that the requirement of a slowly varying envelope is easily fulfilled.

The ultimate task is to introduce different phase shifts for |ψ±⟩. Since the two states
have opposite sense of rotation, they couple differently to a circularly polarized laser
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field, and different shifts of EF are expected. Consequently, the two states gain different

dynamical phases and the relative phase between them can be effectively controlled.

3. Numerical example I: A three-level atomic system

3.1. Orbital evolution in a three-level TDSE

To demonstrate our concept, we provide numerical simulations and discussions for two

example systems. In the first example, we consider a very simple model system: a

three-level atomic system with two degenerate px and py states and one excited s state.

The Hamiltonian of the system subject to the external laser field E(t), polarized in the

x − y plane, is given by H(t) = H0 + r · E(t). Using the basis (|px⟩ , |py⟩ , |s⟩), H(t) is

written as

H(t) =H0 + r · E(t)

=

Ep 0 0

0 Ep 0

0 0 Es

+

 0 0 Ex(t) ⟨px|x |s⟩
0 0 Ey(t) ⟨py| y |s⟩

Ex(t) ⟨s|x |px⟩ Ey(t) ⟨s| y |py⟩ 0

 . (7)

To proceed with specific numerical calculations, the eigenenergies and transition dipoles

are set to the same values as in a widely used model Ne atom [57,58]. The corresponding

energy level difference ∆E = Es−Ep and transition dipole moment D = ⟨s|x |px⟩ /
√
2 =

⟨s| y |py⟩ /
√
2 are 0.576 a.u. and 0.463 a.u., respectively. The process is illustrated in

Fig. 1(a), where the initial p state is driven by a monochromatic circularly polarized

laser field. The electric field is written as E(t) = E0f(t)[cos(ωt)êx + sin(ωt)êy], where

E0 is the amplitude of the electric field and f(t) is the envelope of the pulse. The

envelope expression is sin2(πt/Tall) with Tall the full pulse width corresponding to 10

optical cycles from t = 0 to t = Tall. The |p±⟩ states will experience different energy

shifts under the circularly polarized laser field [59–61].

The evolution of the state is obtained by numerically solving the TDSE. A typical

result represented by the snapshots of the electron probability density (EPD) of the

wave function at different times from t = 0 to t = 10T is shown in Fig. 1(b). In

this calculation, E0 = 0.08 a.u. The wavelength of the driving laser field is 6000 nm

corresponding to the laser frequency ω = 0.007594 a.u. The real-space EPD is obtained

as ρ(x, y, t) = |
∑

j cj(t)ψj(x, y)|2, where the index j ranges over the px, py, and s

states. The superposition coefficients cj are obtained from the TDSE. The real-space

representations of the eigenstates ψj(x, y) are the same as those in [57]. Comparing

the EPDs of the initial state (at t = 0) and the final state (at t = 10T ), the final

state has the same dumbbell shape as the initial state except for a rotation of the state.

The final state is an eigenstate of H0 (the population on the s state is practically zero,
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Figure 1. (a) Illustration of the strategy, taking the model atom of Sec. 3.1 driven

by a laser field as an example. The |p±⟩ states experience different energy shifts under

the circularly polarized laser field [59–61], resulting in a modification of the relative

phase between the two states. As expressed by Eq. (4), modifying the relative phase

between the two complex states |p±⟩ corresponds to the excitation-free population

transfer between the real states |px,y⟩, leading to a rotation of the spatial distribution

of the superposition of |p±⟩. (b) Snapshots of the electron probability density from

the TDSE simulation. The wavelength of the driving field is 6000 nm and the electric

field amplitude is 0.08 a.u. As expected, the angle of the orbital rotates during the

driving laser field.

see Fig. 2). The snapshots between t = 0 and 10T show the process during the light-

matter interaction. We note that our goal is to transfer the initial state to another p

eigenstate in the degenerate subspace after the operation. However, the time-dependent

states during the interaction are not necessarily excitation-free eigenstates. Indeed, the

process is not adiabatic, i.e., the time-dependent state during the interaction is not an

eigenstate of H(t).

Delving further into the process, we project the time-evolving wave function |ψ(t)⟩
onto the complex basis states |p±⟩. The result is shown in Fig. 2(a) in a sphere similar

to the Bloch sphere, which can well illustrate both the populations and phases for the

p states. Specifically, we calculate |cp−/cp+| and ∆φ = arg(cp−) − arg(cp+) for |ψ(t)⟩
at each moment, where cp±(t) = ⟨p±|ψ(t)⟩. Then, the state |ψ(t)⟩ is mapped to points

on the spherical surface with polar angles θs = 2arctan(|cp−/cp+|) and azimuth angles

φs = ∆φ. The latitude of the points indicates the relative population on |p±⟩ and the

longitude indicates the relative phases for |p±⟩. As shown in Fig. 2(a), the initial state
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Figure 2. (a) Illustration of the time-evolving wavefunction on a sphere similar to

the Bloch sphere (see the text in Sec. 3.1 for details). The parameters of the laser field

are the same as those in Fig. 1. (b) The populations of p+ (blue curve), p− (green

curve), and s states (orange curve) as a function of time. (c) The angles of the orbital

ϕ (red curve) and the electric field (blue curve) as a function of time. The angles are

wrapped into the interval [−π/2, π/2].

|px⟩ is at the intersection of the x-axis and the equator of the sphere. Then, the state

evolves following the thick colored curve, oscillating around the equator. During this

process, the state rotates from east to west with the longitude changing monotonically.

This indicates that the relative phase between |p±⟩ gradually accumulates during the

light-matter interaction as predicted in Sec. 2. After the interaction, the final state is

still on the equator. The net effect of this operation is that the relative phase between

|p±⟩ is changed while the populations remain equal. Namely, the final state has the

same shape as the initial px state except for a rotation, as indicated by the two dashed

blue lines.

To further confirm that no excitation is included in the final state after the process,

the time-dependent populations of the three basis states (|p+⟩, |p−⟩, |s⟩) are shown

in Fig. 2(b). One can see that the final populations are equal to the initial ones and

the population of the excited s state returns to zero at the end of the laser pulse.

Thus, eventually no population is transferred from the p subspace to the excited state.

According to Eq. (4), the change of the relative phase between |p±⟩ corresponds to a

population transfer between |px,y⟩.
To quantify the lack of excitation more intuitively, we calculate the fidelity of the

final state with respect to the p eigenstates of the field-free Hamiltonian. We define the

fidelity as F = maxj{|⟨ϕj|ψfinal⟩|2}, where the index j ranges over all the eigenstates
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in the p subspace. Namely, it is the maximum value among the squared moduli of the

projections of the final state onto all the p eigenstates. The calculated result approaches

1 up to the seventh decimal place, indicating that the final state is still an eigenstate in

the p subspace.

The orbital rotation angle ϕ has a very concise correspondence with the relative

phase ∆φ between |p±⟩ as
ϕ = ∆φ/2. (8)

A detailed derivation for this relation can be found in Appendix B. It holds even during

the light-matter interaction when there is excitation to the s state. In this case, ϕ

represents the rotation angle that characterizes the predominant direction of electron

distribution relative to the x-axis. The obtained time-varying ϕ is plotted in Fig. 2(c)

together with the transient angle of the laser field. The angles for both the orbital and

laser field are wrapped into [−π/2, π/2] as the alignment of the p orbital is the same for

ϕ and ϕ + π. One can see that the orbital is rotated gradually, while the electric field

rotates fast with laser frequency ω. The asynchrony of the rotations clearly reflects that

the laser-driven process is far from adiabaticity.

3.2. Numerical verification in Floquet theory

The key to our approach is the phase control of the states associated with the shift

of quasienergies due to the external field. To further verify the physical picture of

the phenomenon already shown by the TDSE simulation, we adopt the Floquet theory

and calculate the quasienergy in the external fields. The quasienergy is obtained by

solving the Floquet equation Eq. (5). As the laser pulse envelope f(t) varies slowly

compared to the carrier wave, we approximate the electric field around time t0 as

E(t; t0) = E0f(t0)[cos(ωt)êx + sin(ωt)êy], which is periodic in T . Moreover, considering

the basis (e−iωt |p+⟩, eiωt |p−⟩, and |s⟩) for the atomic state, the Floquet equation can

be written as a matrix eigenvalue equation

HF (t0) |F ⟩ = EF (t0) |F ⟩ (9)

with the Floquet Hamiltonian [57]

HF (t0) =

 Ep − ω 0 DE0f(t0)

0 Ep + ω DE0f(t0)

DE0f(t0) DE0f(t0) Es

 (10)

By solving Eq. (9) at various times t0, the quasienergies for p± states (denoted as EF,±)
varying over time are obtained. The numerical result is shown in Fig. 3(a). One can see

that the quasienergies shift when the driving field is turned on. Importantly, the energy

shifts for p± are different. As the amplitude of the external electric field increases, the

quasienergy difference between p± also increases. According to Eq. (6), this energy
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difference leads to an induced phase difference ∆φ between p− and p+ after passage of

the laser pulse, given by

∆φ = −
∫
pulse

(EF,− − EF,+)dt, (11)

and the initial p orbital transformed into another one differing by the rotation angle

ϕ =
∆φ

2
= −1

2

∫
pulse

(EF,− − EF,+)dt. (12)

In Fig. 3(b), we compare the angle predicted from Eq. (12) with that obtained from the

TDSE simulation. The excellent agreement verifies that the excitation-free quantum

control found in Sec. 3.1 is precisely based on the asymmetric Floquet engineering of

the degenerate p± states in a circularly polarized external laser as we proposed.

Figure 3. (a) Quasienergies of the laser dressed p± orbitals obtained from the Floquet

theory as well as the amplitude of the electric field as a function of time. The laser

parameters are the same as in Fig. 1. (b) The angle of the orbital obtained from

Floquet theory (Eq. (12)) compared with that from numerically solving the three-level

TDSE.

3.3. Controlling the states by tuning the laser intensity

As Eqs. (11) and (12) indicate, the relative phase and the rotation angle are determined

by the difference of the laser-induced energy shifts. These depend on the intensity and

wavelength of the driving laser field. Since it is easier to tune the intensity than the
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wavelength, it will be an effective way to control the quantum state by adjusting the

laser intensity.

Figure 4. The orbital angle ϕ obtained from Floquet theory and by numerically

solving the TDSE respectively for different laser wavelengths and intensities. The

intensity varies from 1× 1014 to 7× 1014 W/cm2 and the wavelengths are 3200, 4000,

6000, and 8000 nm.

As a demonstration, the rotation angles for various laser intensities and wavelengths

obtained from both the TDSE simulation and the Floquet theory are displayed in Fig. 4.

The other parameters are the same as in Fig. 2. Within almost an order of magnitude

change in laser intensity, the results exhibit a smoothly monotonic dependence on

intensity for various wavelengths. It is simple to predict the required input intensity

for achieving the desired control after determining a few data points. Also, the good

agreement between the TDSE and Floquet results again verifies the proposed physical

picture.

Comparing our method with adiabatic processes, the adiabatic process generally

requires that the angular frequency ω is much smaller than the difference between the

shifted energies of the states after the degeneracy is lifted. Consequently, the wavelength

needs to be on the order of tens of thousands of nanometers, corresponding to tens of

femtoseconds per optical cycle. Therefore, the adiabatic process is impractical compared

to our method.

4. Numerical example II: A non-isotropic system beyond three levels

Although the demonstration in Sec. 3 employs a simple 3-level atomic system, the

fundamental idea is general. It is not restricted to 3-level systems, nor is it limited to

isotropic systems. As a further numerical demonstration, we investigate the evolution

of one of the degenerate highest occupied molecular orbitals (HOMO) of a borane

molecule subject to a circularly polarized laser field, using real-space time-dependent
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density functional theory (TDDFT) [62]. This system is planar and displays a threefold

rotational symmetry. Besides, since the system is described in real space, it is not

restricted to few levels.

1

(d)

(e) (f)

(g) (h)

(a)

(b)

(c) 0T

10T

3.5T

4.5T 4.9T

5.5T

�� ��

Figure 5. (a) The diagram of the molecular structure of borane and the degenerate

HOMO orbitals ψx and ψy of the molecule. (b) The final relative phase ∆φ between

the two degenerate states for different wavelengths (800 and 1600 nm) and different

electric field amplitudes (0, 0.01, 0.02, 0.03, and 0.04 a.u.). The fidelities F of each

case are shown by the dashed lines corresponding to the right vertical axis. (c) to (h)

The electron probability density distribution over time from the TDDFT simulation

with laser wavelength 1600 nm and electric field amplitude 0.02 a.u. as denoted by the

arrow in panel (b).

The TDDFT computation is implemented using the open-access, real-space, and

real-time code Octopus [63–65]. The Kohn-Sham (KS) equations are discretized on a

Cartesian grid with spherical boundaries of radius 40 a.u. and the grid spacing is 0.4

a.u. The Boron atom is placed at the origin. The local density approximation (LDA)

and Hartwigsen-Goedecker-Hutter LDA pseudopotentials are used for all atoms [66]. A

diagram of the molecular structure of borane and the two degenerate HOMOs is shown

in Fig. 5(a). The two HOMOs exhibit different spatial distributions and are denoted as

ψx and ψy, respectively. In this numerical example, ψx is taken as the initial state. As

mentioned in Sec. 2, one can also consider another set of orbitals via the transformation

|ψ+⟩ =
1√
2
(|ψx⟩+ i |ψy⟩), (13)

|ψ−⟩ =
1√
2
(|ψx⟩ − i |ψy⟩). (14)

|ψ+⟩ and |ψ−⟩ are complex states and will be termed as left- and right-rotating states

respectively as in the atomic example. The initial state can be written as a superposition
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of the two states with opposite rotations as |ψx⟩ = 1√
2
(|ψ+⟩ + |ψ−⟩). When driven

by a circularly polarized laser pulse, different dynamical phase accumulations are

obtained for |ψ±⟩ resulting in the excitation-free quantum control of the quantum

state. The form of the applied laser field is the same as described above except for

the intensity and wavelength. We consider various wavelengths (800 nm and 1600

nm) and different electric field amplitudes (0, 0.01, 0.02, 0.03, and 0.04 a.u.). Figure

5(b) shows the final phase difference between |ψ±⟩ after the laser-matter interaction as

∆φ = arg[⟨ψ−|ψfinal⟩]− arg[⟨ψ+|ψfinal⟩], where |ψfinal⟩ is the final state at the end of the

pulse. We find that ∆φ depends smoothly and monotonically on the intensity. The

corresponding fidelity F is shown by the red lines corresponding to the right vertical

axis in Fig. 5(b). The values are close to 1, indicating excitation-free control. Again, the

change of ∆φ leads to effective control of the quantum state in the degenerate subspace,

which corresponds to a rotation of the spatial distribution of the orbital. Figures 5(c)-

(h) illustrate the electron probability density distribution over time from the TDDFT

simulation, with laser wavelength 1600 nm and electric field amplitude 0.02 a.u. as

denoted by the arrow in Fig. 5(b). These results for a non-isotropic system beyond

three levels confirm the universality and reliability of our approach.

5. Conclusion

In summary, we propose a non-adiabatic approach for excitation-free control of quantum

states. We first prove that the excitation-free population transfer between real

eigenstates is equivalent to controlling the relative phase between the complex left-

and right-rotating states. Then, we propose that Floquet engineering with a circularly

polarized driving field introduces different phase shifts to the left- and right-rotating

degenerate orbitals. During the interaction, the process is far from adiabaticity, thus

the excitation-free operation with our method can be performed in a much shorter

time scale than that required for an adiabatic process. The underlying picture and the

feasibility of the method are numerically demonstrated based on the Floquet theory

and by solving the TDSE. The results predicted by Floquet theory agree very well

with the TDSE results, confirming the proposed physical mechanism. We also show

that the phase shift and rotation angle can be effectively controlled by tuning the laser

intensity. Finally, we show that the phenomenon is universal and we demonstrate a

more general example without isotropic symmetry and beyond the single-active-electron

approximation and few-level approximation. This technique opens new opportunities

for quantum computing, the design of quantum gates, and the regulation of electron

density in physical, chemical, and biological reactions.
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Appendix

A simple example comparing the processes in 1D and 2D external fields with

degenerate states

Here, we apply the same atomic model as in Sec. 3.1. We first consider a 1D driving

laser field linearly polarized in the x direction. Note that, although the degenerate

states |px,y⟩ are taken into account in this model, the laser field only couples the

|px⟩ and |s⟩ states. Thus, one can roughly estimate that the process is adiabatic if

the angular frequency of the driving laser is much smaller than the energy difference

between the s and p levels ∆E = 0.576 a.u., i.e., the wavelength is much longer than

79.2 nm. Taking |px⟩ as the initial state, we simulate the time evolution of the state in a

monochromatic linearly polarized laser by numerically solving the TDSE. The intensity

of the laser is 5 × 1014 W/cm2 and the wavelength is 800 nm. In all the calculations

in this appendix, the envelope of the laser pulses is sine squared with a full duration

of 10 optical cycles. To quantitatively represent the state evolution, we calculate the

dipole of the time-dependent state |ψ(t)⟩ as d(t) = −⟨ψ(t)|x|ψ(t)⟩ = −
∫
ρ(x, t)xdx with

ρ(x, t) = |ψ(x, t)|2. The time evolution of this quantity reflects the change of the electron

density distribution in the external laser field. The result is shown in Fig. A1(a). The

dipole changes periodically and synchronously with the electric field.

On the other hand, we examine the case of a 2D driving field, taking a counter-

rotating bicircular polarized field as an example. The electric field is given by E(t) =

[E0 cos(ωt)+E1 cos(2ωt)]êx+ [E0 sin(ωt)−E1 sin(2ωt)]êy, where E0 and E1 correspond

to the intensities 5× 1014 W/cm2 and 5× 1012 W/cm2, and ω is the angular frequency

of the fundamental component. The Lissajous figure of the field is shown in Fig. A1(b).

We simulate the time evolution of the px initial state by numerically solving the TDSE.

In this 2D case, the state evolution is represented by the angle of the predominant

direction of electron distribution relative to the x-axis as in the main text. Figure A1(c)

shows the result for the fundamental wavelength of 4000 nm. The time-dependent angle

of the instantaneous electric field is shown as well. One can see that the angle of the

state evolves in a totally different manner compared to the laser field, meaning that the

evolution is far from adiabaticity. Figure A1(d) shows the results when increasing the

fundamental wavelength to 28000 nm. Although the state rotates roughly following the

electric field, the angle of the orbital still does not exactly coincide with the angle of the

field, exhibiting additional oscillations. The evolution is still somewhat non-adiabatic

with even such a long wavelength.

The comparison in Fig. A1 shows that a much longer wavelength is required for
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the 2D driving field. This is because the 2D field also couples the degenerate p states.

Consequently, the angular frequency of the driving field needs to be much smaller than

the difference of the shifted energies of the degenerate states after the degeneracy is lifted

to achieve adiabatic control, which is much more demanding than with a 1D driving

field.

Figure A1. (a) The time-dependent dipole d(t) of the orbital in a 1D driving field,

where the intensity is I = 5 × 1014 W/cm2 and the wavelength is 800 nm. (b)

Lissajous figure of a counter-rotating bicircular field with 100:1 intensity ratio. (c)

The time-dependent angle of the orbital ϕ in the 2D bicircular field with intensity

and wavelength of the fundamental component being 5 × 1014 W/cm2 and 4000 nm,

respectively. The transient angle of the electric field is shown by the black curve. The

angles are wrapped into the interval [−π/2, π/2]. (d) The same as (c) except that the

fundamental wavelength is increased to 28000 nm.

Detailed proof of Eq. (8)

Here, we discuss the relationship between the rotation angle ϕ of the p orbital and the

phase difference ∆φ. In the coordinate representation, p+ and p− orbitals can be written

as

ψp±(r) = ψ0(r, θr)e
±iφr , (A1)

where r, θr, φr are the radial distance, polar angle, and azimuthal angle in the spherical

coordinate system, respectively.
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A superposition of the two states can be expressed as

ψ(r) = |b+|eiαψp+(r) + |b−|eiβψp−(r), (A2)

where |b±| are the absolute values of the superposition coefficients while α and β are

their phases. Substituting Eq. (A1) into Eq. (A2), we obtain

|ψ(r)|2 = |ψ0(r, θr)|2

×[(|b+| − |b−|)2 + 4|b+||b−| cos2(φr −
∆φ

2
)]

(A3)

with ∆φ = β − α the phase difference between |p±⟩. In Eq. (A3), |ψ0(r, θr)|2 is

independent of φr, the first term in the brackets is a constant and the second term

maximizes at φr = ∆φ/2, leading to a dumbbell distribution aligned along the direction

∆φ/2.

For the final states after the excitation-free operation with the initial state px, we

have |b±| = 1/
√
2 and

|ψ(r)|2 = 2 |ψ0(r, θr)|2 cos2(φr −
∆φ

2
). (A4)

This corresponds to a dumbbell p-orbital rotated by an angle of ϕ = ∆φ/2 relative to

px. In particular, the orbital is px for ∆φ = 0 and py for ∆φ = π.
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C, Theophilou I, Welden A and Rubio A 2020 The Journal of Chemical Physics 152 124119

[66] Hartwigsen C, Goedecker S and Hutter J 1998 Physical Review B 58 3641–3662


	INTRODUCTION
	Basic Concept
	Numerical example I: A three-level atomic system
	Orbital evolution in a three-level TDSE
	Numerical verification in Floquet theory
	Controlling the states by tuning the laser intensity

	Numerical example II: A non-isotropic system beyond three levels
	Conclusion

