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Abstract.

We present a non-adiabatic approach to transfer a quantum state between different
superpositions of the eigenstates within a degenerate subspace, namely between
eigenstates of various spatial orientations, while avoiding excitation. This is achieved
by inducing different accumulated dynamical phases for the left- and right-rotating
components of the state, in analogy with optical rotation. The control of the dynamical
phase is based on the asymmetric Floquet energy shift induced by a monochromatic
circularly polarized external laser field. In contrast to adiabatic control methods
demanding an extremely slowly varying carrier wave of the laser field for excitation-
free control, our approach requires only moderately slow variation in the envelope.
This methodology promises fast quantum-state manipulation and control of electron
dynamics in biological and chemical reactions.
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1. INTRODUCTION

The physics of controlling quantum states in quantum systems has received extensive
attention in recent years, leading to numerous theoretical and experimental studies
[1-18]. Tt plays an important role in quantum information science [19-27], quantum
computing [28-37], and quantum communication [38-45]. A concomitant problem
in quantum-state manipulation is excitation. The increase in excitation density can
introduce disturbances, such as decoherence or noise, that interfere with the preparation
and manipulation of quantum states, ultimately degrading the performance of quantum
devices across various applications. To avoid this problem, adiabatic control is a possible
way. The adiabatic process is slow enough so that the system remains always in an
eigenstate of the time-dependent Hamiltonian, and thus there will be no excitation.
However, the time required for this process will often be very long. A long time is
detrimental, as it can also imply decoherence, accumulation of errors and perturbations,
or even the escape of the system from its confinement. Moreover, with shorter process
times, experiments could be repeated more often to increase signal-to-noise ratios.
Therefore, there are ongoing efforts to achieve excitation-free quantum manipulation
in a short time. A specific idea is to reach the final results of a slow adiabatic evolution
through a shorter route. Consequently, the concept of “shortcuts to adiabaticity”
(STA) was put forward [8] and various methods have been developed, such as the
counterdiabatic or transitionless tracking approach [46], fast-forward approach [47,48],
alternative shortcuts through unitary transformations [49], and optimal control theory
[50].

In quantum mechanics, it requires a much longer operation time to achieve
adiabaticity when two or more degenerate states are involved. This is often the case
when the parameters of the operation change in two dimensions rather than in one
dimension. For a quantum system in an external laser field, for example, a linearly
polarized driving field usually couples states of different energy, i.e., no degeneracies
are involved. By contrast, a two-dimensional (2D) driving field will also couple the
degenerate states at the same energy with different spatial orientations. We present
a simple demonstration in the Appendix for clarity. The much longer time required
with degenerate states can be understood as follows: Intuitively, an adiabatic process
requires that the time scale for the parameter change, 7 = 27/w, is much larger than
21 /AE, with w being the angular frequency of the driving field and AE being the
difference in energy eigenvalues of the involved states. Namely, it requires w < A&
(atomic units are used throughout this manuscript), although we note that strictly
speaking the adiabaticity criterion is a much more complicated question [51-55]. When
no degenerates states are involved, w needs to be much smaller than the gap of different
energy levels. However, when degenerate states are coupled, w should be smaller than
the difference between the shifted energies of the degenerate states after the degeneracy
is lifted. Apparently, this requires a much smaller w and thus a much longer driving
period of the laser. Moreover, it is found that, if the external field crosses zero, the
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process will converge to adiabaticity with decreasing of w in a slower manner [51], adding
to the requirement of a long operating time scale. Hence, developing a rapid method
that overcomes the constraints of adiabatic conditions to transfer quantum states within
the degenerate subspace is important for fields such as quantum control and quantum
computation. Notably, different quantum states within the degenerate subspace exhibit
different spatial orientations. The orientation of quantum states plays a critical role
in microscopic dynamics such as chemical reactions and strong-field processes [11, 56].
Consequently, such control mechanisms are of paramount significance for manipulating
the physical dynamics on ultrafast timescales.

In this work, we propose an excitation-free method that can manipulate quantum
states in the degenerate subspace much faster than adiabatic processes, by using
monochromatic circularly polarized light. The strategy is based on manipulating the
dynamical phase of left- and right-rotating components of the state, owing to the
asymmetric Floquet energy shifts of the components in the circularly polarized field.
The scheme is numerically demonstrated by ab initio simulations and analyzed using
Floquet theory. Our results show that excitation can be avoided with a driving pulse of
only a few optical cycles. Besides, by adjusting the field parameters the final state can
be freely adapted as required.

The paper is arranged as follows: In section 2 we briefly present the basic
concept and theoretical framework. In section 3 and section 4, the numerical result is
presented and we provide a detailed explanation of the mechanism behind this physical
phenomenon. Finally, we summarize our findings in section 5.

2. Basic Concept

We consider an eigenstate of a quantum system, which has two degenerate states
corresponding to the freedom of spatial orientation, as the initial state. We label the
initial state as [¢,) and the degenerate state coupled by the 2D external laser field as
|9,). The subscripts « and y indicate that the two eigenstates have different spatial
distributions. If we redistribute the population between |1,) and |1,), the finally
obtained superposition of them cos&[i,) + siné|i,) is an eigenstate of the system,
too, with the same eigenvalue and a different spatial distribution. Here, we choose &
as real-valued and we write the coefficients as cos¢ and sin &, because we consider the
excitation-free control of the quantum state (cos? & +sin*¢ = 1).
One can consider an alternative set of basis set via the transformation
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|1, ) and |¢)_) are complex states with nonzero angular momenta and will be termed as

1) =—=(lha) +i[y)), (1)

) =—=(ltha) = i[ty)). (2)

left- and right-rotating states, respectively.



The initial state [1,) can be written as a superposition of |¢4)
1
%) =~

and also [i,) = ﬁ(hﬂr) —|1_)). Therefore, any superposed state after the population
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redistribution can be written as:
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Equation (4) constitutes a pivotal conclusion of this study: the excitation-free

(1) + [v-) ) (4)

population transfer between real eigenstates |1, ,) with real coefficients is equivalent
to controlling the relative phase between the complex states |¢)4).

Hence, the next question is how to control the relative phases of the states without
excitation. We will show that this can be achieved via Floquet engineering the energy
level with a circularly polarized laser field. According to the Floquet theorem, with a
time-dependent Hamiltonian H(t) = H(t+ T') that is periodic with period T, the time-
dependent Schrodinger equation (TDSE) has solutions of the form [t)(¢)) = e~%F! | P(t))
with |P(t)) = |P(t+T)) known as Floquet states or dressed states. Ep is called the
quasienergy. &r and |P(t)) satisfy the Floquet equation

(H —i0/0t)|P) = Ep|P). (5)

In our case, the period of the Hamiltonian is the period of the laser field, namely
T = 2r/w. The shift of & compared to the energy for zero external field can be
understood as the laser-dressing effect. In practice, the driving laser field has an envelope
f(t). If the initial state is a Floquet state and as long as the variation of the envelope is
modest, the time-dependent state can be expressed as one Floquet state at each time.
This leads to two consequences. First, the phase shift of the dressed state after the
laser-matter interaction is

o — / ety (6)

The integration is performed over the duration of the laser pulse. £p(t) can be time-
dependent due to the variation of the envelope, and it is determined from the Floquet
equation Eq. (5), where the amplitude of the laser-interaction term in H is determined
by f(t). Second, at the end of the laser pulse, the laser-dressed state becomes the
Floquet state with zero external field. This state is the same as the initial Floquet state
before the start of the pulse except for a phase shift according to Eq. (6). In essence,
we have shown that Floquet engineering of the quantum system provides a method to
control the phase of the state without excitation. Our discussion below will demonstrate
that the requirement of a slowly varying envelope is easily fulfilled.

The ultimate task is to introduce different phase shifts for |¢)1). Since the two states
have opposite sense of rotation, they couple differently to a circularly polarized laser
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field, and different shifts of £ are expected. Consequently, the two states gain different
dynamical phases and the relative phase between them can be effectively controlled.

3. Numerical example I: A three-level atomic system

3.1. Orbital evolution in a three-level TDSE

To demonstrate our concept, we provide numerical simulations and discussions for two
example systems. In the first example, we consider a very simple model system: a
three-level atomic system with two degenerate p, and p, states and one excited s state.
The Hamiltonian of the system subject to the external laser field E(t), polarized in the
x — y plane, is given by H(t) = Hy +r - E(t). Using the basis (|p.), [py),|s)), H(t) is
written as

(&, 0 0
—l0 & 0|+
0 0 &
0 0 Ey(t) (pz| z|5)
0 0 Ey(t)<py|y|3> . (7)
| Ex(t) (s| @ |pa)  Ey(t) (s|y [py) 0

To proceed with specific numerical calculations, the eigenenergies and transition dipoles
are set to the same values as in a widely used model Ne atom [57,58]. The corresponding
energy level difference AE = &, — &, and transition dipole moment D = (s| z |p,) /v2 =
(s|y|p,) /V2 are 0.576 a.u. and 0.463 a.u., respectively. The process is illustrated in
Fig. 1(a), where the initial p state is driven by a monochromatic circularly polarized
laser field. The electric field is written as E(t) = Eqf(t)[cos(wt)é, + sin(wt)é,], where
Ey is the amplitude of the electric field and f(t) is the envelope of the pulse. The
envelope expression is sin?(7t/Tyy) with T,y the full pulse width corresponding to 10
optical cycles from ¢t = 0 to t = T,y. The |py) states will experience different energy
shifts under the circularly polarized laser field [59-61].

The evolution of the state is obtained by numerically solving the TDSE. A typical
result represented by the snapshots of the electron probability density (EPD) of the
wave function at different times from ¢t = 0 to ¢ = 107 is shown in Fig. 1(b). In
this calculation, Fy = 0.08 a.u. The wavelength of the driving laser field is 6000 nm
corresponding to the laser frequency w = 0.007594 a.u. The real-space EPD is obtained
as p(r,y,t) = |32, cj(t)(x,y)]?, where the index j ranges over the p,, p,, and s
states. The superposition coefficients ¢; are obtained from the TDSE. The real-space
representations of the eigenstates 1;(z,y) are the same as those in [57]. Comparing
the EPDs of the initial state (at ¢ = 0) and the final state (at ¢t = 107"), the final
state has the same dumbbell shape as the initial state except for a rotation of the state.
The final state is an eigenstate of Hy (the population on the s state is practically zero,
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Figure 1. (a) Ilustration of the strategy, taking the model atom of Sec. 3.1 driven
by a laser field as an example. The |p+) states experience different energy shifts under
the circularly polarized laser field [59-61], resulting in a modification of the relative
phase between the two states. As expressed by Eq. (4), modifying the relative phase
between the two complex states |p+) corresponds to the excitation-free population
transfer between the real states |p, ,), leading to a rotation of the spatial distribution
of the superposition of |p+). (b) Snapshots of the electron probability density from
the TDSE simulation. The wavelength of the driving field is 6000 nm and the electric
field amplitude is 0.08 a.u. As expected, the angle of the orbital rotates during the
driving laser field.

see Fig. 2). The snapshots between ¢ = 0 and 107" show the process during the light-
matter interaction. We note that our goal is to transfer the initial state to another p
eigenstate in the degenerate subspace after the operation. However, the time-dependent
states during the interaction are not necessarily excitation-free eigenstates. Indeed, the
process is not adiabatic, i.e., the time-dependent state during the interaction is not an
eigenstate of H(t).

Delving further into the process, we project the time-evolving wave function [ (t))
onto the complex basis states |py). The result is shown in Fig. 2(a) in a sphere similar
to the Bloch sphere, which can well illustrate both the populations and phases for the
p states. Specifically, we calculate |c, /cp, | and Ap = arg(c, ) — arg(c,, ) for [1(t))
at each moment, where ¢, (t) = (px|1(t)). Then, the state |1)(t)) is mapped to points
on the spherical surface with polar angles 8, = 2arctan(|c,_/c,,|) and azimuth angles
vs = Ap. The latitude of the points indicates the relative population on [ps) and the
longitude indicates the relative phases for [p.). As shown in Fig. 2(a), the initial state
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Figure 2. (a) Illustration of the time-evolving wavefunction on a sphere similar to
the Bloch sphere (see the text in Sec. 3.1 for details). The parameters of the laser field
are the same as those in Fig. 1. (b) The populations of p; (blue curve), p_ (green
curve), and s states (orange curve) as a function of time. (c¢) The angles of the orbital
¢ (red curve) and the electric field (blue curve) as a function of time. The angles are
wrapped into the interval [—m/2,7/2].

|p.) is at the intersection of the z-axis and the equator of the sphere. Then, the state
evolves following the thick colored curve, oscillating around the equator. During this
process, the state rotates from east to west with the longitude changing monotonically.
This indicates that the relative phase between |ps) gradually accumulates during the
light-matter interaction as predicted in Sec. 2. After the interaction, the final state is
still on the equator. The net effect of this operation is that the relative phase between
|p+) is changed while the populations remain equal. Namely, the final state has the
same shape as the initial p, state except for a rotation, as indicated by the two dashed
blue lines.

To further confirm that no excitation is included in the final state after the process,
the time-dependent populations of the three basis states (|p4), |p—), |s)) are shown
in Fig. 2(b). One can see that the final populations are equal to the initial ones and
the population of the excited s state returns to zero at the end of the laser pulse.
Thus, eventually no population is transferred from the p subspace to the excited state.
According to Eq. (4), the change of the relative phase between |pL) corresponds to a
population transfer between |p, ).

To quantify the lack of excitation more intuitively, we calculate the fidelity of the
final state with respect to the p eigenstates of the field-free Hamiltonian. We define the
fidelity as F = max;{|(¢;|{mna1)|*}, where the index j ranges over all the eigenstates
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in the p subspace. Namely, it is the maximum value among the squared moduli of the
projections of the final state onto all the p eigenstates. The calculated result approaches
1 up to the seventh decimal place, indicating that the final state is still an eigenstate in
the p subspace.

The orbital rotation angle ¢ has a very concise correspondence with the relative
phase Ay between [py) as

¢ =Ap/2. (8)

A detailed derivation for this relation can be found in Appendix B. It holds even during
the light-matter interaction when there is excitation to the s state. In this case, ¢
represents the rotation angle that characterizes the predominant direction of electron
distribution relative to the z-axis. The obtained time-varying ¢ is plotted in Fig. 2(c)
together with the transient angle of the laser field. The angles for both the orbital and
laser field are wrapped into [—7/2, 7/2] as the alignment of the p orbital is the same for
¢ and ¢ + w. One can see that the orbital is rotated gradually, while the electric field
rotates fast with laser frequency w. The asynchrony of the rotations clearly reflects that
the laser-driven process is far from adiabaticity.

3.2. Numerical verification in Floquet theory

The key to our approach is the phase control of the states associated with the shift
of quasienergies due to the external field. To further verify the physical picture of
the phenomenon already shown by the TDSE simulation, we adopt the Floquet theory
and calculate the quasienergy in the external fields. The quasienergy is obtained by
solving the Floquet equation Eq. (5). As the laser pulse envelope f(t) varies slowly
compared to the carrier wave, we approximate the electric field around time t; as
E(t;t0) = Eof(to)[cos(wt)é, + sin(wt)e,], which is periodic in T". Moreover, considering
the basis (e7™!|p,), ¢! |p_), and [s)) for the atomic state, the Floquet equation can
be written as a matrix eigenvalue equation

Hp(to) |F) = Er(to) |F) (9)
with the Floquet Hamiltonian [57]

Ep—w 0 DEy f(to)
DEyf(to) DEyf(to) &,

By solving Eq. (9) at various times ¢, the quasienergies for p, states (denoted as £ 4)
varying over time are obtained. The numerical result is shown in Fig. 3(a). One can see
that the quasienergies shift when the driving field is turned on. Importantly, the energy
shifts for p. are different. As the amplitude of the external electric field increases, the
quasienergy difference between py also increases. According to Eq. (6), this energy
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difference leads to an induced phase difference Ay between p_ and p, after passage of
the laser pulse, given by

Ap = —/ (Ep- — Epy)dt, (11)
pulse
and the initial p orbital transformed into another one differing by the rotation angle
A 1
=10 = —-/ (Ep — Eps)dL. (12)
2 2 pulse

In Fig. 3(b), we compare the angle predicted from Eq. (12) with that obtained from the
TDSE simulation. The excellent agreement verifies that the excitation-free quantum
control found in Sec. 3.1 is precisely based on the asymmetric Floquet engineering of
the degenerate pi states in a circularly polarized external laser as we proposed.
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Figure 3. (a) Quasienergies of the laser dressed p orbitals obtained from the Floquet
theory as well as the amplitude of the electric field as a function of time. The laser
parameters are the same as in Fig. 1. (b) The angle of the orbital obtained from
Floquet theory (Eq. (12)) compared with that from numerically solving the three-level
TDSE.

3.8. Controlling the states by tuning the laser intensity

As Egs. (11) and (12) indicate, the relative phase and the rotation angle are determined
by the difference of the laser-induced energy shifts. These depend on the intensity and
wavelength of the driving laser field. Since it is easier to tune the intensity than the
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wavelength, it will be an effective way to control the quantum state by adjusting the
laser intensity.

= —Floquet 3200nm
jo’ ——Floquet 4000nm
=2 Floquet 6000nm
g ——Floquet 8000nm
o TDSE 3200nm
-3 TDSE 4000nm
¢ TDSE 6000nm
% TDSE 8000nm

1 2 3 4 5 6 7
Laser intensity (W/cm2) x1014

Figure 4. The orbital angle ¢ obtained from Floquet theory and by numerically
solving the TDSE respectively for different laser wavelengths and intensities. The
intensity varies from 1 x 10 to 7 x 10'* W/cm? and the wavelengths are 3200, 4000,
6000, and 8000 nm.

As a demonstration, the rotation angles for various laser intensities and wavelengths
obtained from both the TDSE simulation and the Floquet theory are displayed in Fig. 4.
The other parameters are the same as in Fig. 2. Within almost an order of magnitude
change in laser intensity, the results exhibit a smoothly monotonic dependence on
intensity for various wavelengths. It is simple to predict the required input intensity
for achieving the desired control after determining a few data points. Also, the good
agreement, between the TDSE and Floquet results again verifies the proposed physical
picture.

Comparing our method with adiabatic processes, the adiabatic process generally
requires that the angular frequency w is much smaller than the difference between the
shifted energies of the states after the degeneracy is lifted. Consequently, the wavelength
needs to be on the order of tens of thousands of nanometers, corresponding to tens of
femtoseconds per optical cycle. Therefore, the adiabatic process is impractical compared
to our method.

4. Numerical example II: A non-isotropic system beyond three levels

Although the demonstration in Sec. 3 employs a simple 3-level atomic system, the
fundamental idea is general. It is not restricted to 3-level systems, nor is it limited to
isotropic systems. As a further numerical demonstration, we investigate the evolution
of one of the degenerate highest occupied molecular orbitals (HOMO) of a borane
molecule subject to a circularly polarized laser field, using real-space time-dependent
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density functional theory (TDDFT) [62]. This system is planar and displays a threefold
rotational symmetry. Besides, since the system is described in real space, it is not
restricted to few levels.
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Figure 5. (a) The diagram of the molecular structure of borane and the degenerate
HOMO orbitals ¢, and 9, of the molecule. (b) The final relative phase Ay between
the two degenerate states for different wavelengths (800 and 1600 nm) and different
electric field amplitudes (0, 0.01, 0.02, 0.03, and 0.04 a.u.). The fidelities F of each
case are shown by the dashed lines corresponding to the right vertical axis. (c) to (h)
The electron probability density distribution over time from the TDDFT simulation
with laser wavelength 1600 nm and electric field amplitude 0.02 a.u. as denoted by the
arrow in panel (b).

The TDDFT computation is implemented using the open-access, real-space, and
real-time code Octopus [63-65]. The Kohn-Sham (KS) equations are discretized on a
Cartesian grid with spherical boundaries of radius 40 a.u. and the grid spacing is 0.4
a.u. The Boron atom is placed at the origin. The local density approximation (LDA)
and Hartwigsen-Goedecker-Hutter LDA pseudopotentials are used for all atoms [66]. A
diagram of the molecular structure of borane and the two degenerate HOMOs is shown
in Fig. 5(a). The two HOMOs exhibit different spatial distributions and are denoted as
Y, and 1), respectively. In this numerical example, 1), is taken as the initial state. As
mentioned in Sec. 2, one can also consider another set of orbitals via the transformation

1 .
) = (1) +110,), (13)
o) = () — i 4y)). (14)

V2

|1, ) and [¢_) are complex states and will be termed as left- and right-rotating states
respectively as in the atomic example. The initial state can be written as a superposition
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of the two states with opposite rotations as [i,) = \%(\1/4) + [1_)). When driven
by a circularly polarized laser pulse, different dynamical phase accumulations are
obtained for |¢4) resulting in the excitation-free quantum control of the quantum
state. The form of the applied laser field is the same as described above except for
the intensity and wavelength. We consider various wavelengths (800 nm and 1600
nm) and different electric field amplitudes (0, 0.01, 0.02, 0.03, and 0.04 a.u.). Figure
5(b) shows the final phase difference between [¢)1) after the laser-matter interaction as
Ap = arg[(V_ |[Vsna)] — arg[(¥4 [sna1)], where |tgna) is the final state at the end of the
pulse. We find that Ay depends smoothly and monotonically on the intensity. The
corresponding fidelity F is shown by the red lines corresponding to the right vertical
axis in Fig. 5(b). The values are close to 1, indicating excitation-free control. Again, the
change of Ay leads to effective control of the quantum state in the degenerate subspace,
which corresponds to a rotation of the spatial distribution of the orbital. Figures 5(c)-
(h) illustrate the electron probability density distribution over time from the TDDFT
simulation, with laser wavelength 1600 nm and electric field amplitude 0.02 a.u. as
denoted by the arrow in Fig. 5(b). These results for a non-isotropic system beyond
three levels confirm the universality and reliability of our approach.

5. Conclusion

In summary, we propose a non-adiabatic approach for excitation-free control of quantum
states. We first prove that the excitation-free population transfer between real
eigenstates is equivalent to controlling the relative phase between the complex left-
and right-rotating states. Then, we propose that Floquet engineering with a circularly
polarized driving field introduces different phase shifts to the left- and right-rotating
degenerate orbitals. During the interaction, the process is far from adiabaticity, thus
the excitation-free operation with our method can be performed in a much shorter
time scale than that required for an adiabatic process. The underlying picture and the
feasibility of the method are numerically demonstrated based on the Floquet theory
and by solving the TDSE. The results predicted by Floquet theory agree very well
with the TDSE results, confirming the proposed physical mechanism. We also show
that the phase shift and rotation angle can be effectively controlled by tuning the laser
intensity. Finally, we show that the phenomenon is universal and we demonstrate a
more general example without isotropic symmetry and beyond the single-active-electron
approximation and few-level approximation. This technique opens new opportunities
for quantum computing, the design of quantum gates, and the regulation of electron
density in physical, chemical, and biological reactions.
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Appendix

A simple ezample comparing the processes in 1D and 2D external fields with
degenerate states

Here, we apply the same atomic model as in Sec. 3.1. We first consider a 1D driving
laser field linearly polarized in the x direction. Note that, although the degenerate
states |p;,) are taken into account in this model, the laser field only couples the
|p.) and |s) states. Thus, one can roughly estimate that the process is adiabatic if
the angular frequency of the driving laser is much smaller than the energy difference
between the s and p levels AE = 0.576 a.u., i.e., the wavelength is much longer than
79.2 nm. Taking |p,) as the initial state, we simulate the time evolution of the state in a
monochromatic linearly polarized laser by numerically solving the TDSE. The intensity
of the laser is 5 x 10 W/cm? and the wavelength is 800 nm. In all the calculations
in this appendix, the envelope of the laser pulses is sine squared with a full duration
of 10 optical cycles. To quantitatively represent the state evolution, we calculate the
dipole of the time-dependent state |1 (t)) as d(t) = —(¢(¢)|z]y(t)) = — [ p(z, t)zdz with
p(z,t) = [{(z,t)|?. The time evolution of this quantity reflects the change of the electron
density distribution in the external laser field. The result is shown in Fig. Al(a). The
dipole changes periodically and synchronously with the electric field.

On the other hand, we examine the case of a 2D driving field, taking a counter-
rotating bicircular polarized field as an example. The electric field is given by E(t) =
[Ey cos(wt) + E4 cos(2wt)]|é, + [Ep sin(wt) — Ej sin(2wt)]é,, where Ey and E; correspond
to the intensities 5 x 10 W/ecm? and 5 x 102 W/cm?, and w is the angular frequency
of the fundamental component. The Lissajous figure of the field is shown in Fig. A1(b).
We simulate the time evolution of the p, initial state by numerically solving the TDSE.
In this 2D case, the state evolution is represented by the angle of the predominant
direction of electron distribution relative to the z-axis as in the main text. Figure A1(c)
shows the result for the fundamental wavelength of 4000 nm. The time-dependent angle
of the instantaneous electric field is shown as well. One can see that the angle of the
state evolves in a totally different manner compared to the laser field, meaning that the
evolution is far from adiabaticity. Figure A1(d) shows the results when increasing the
fundamental wavelength to 28000 nm. Although the state rotates roughly following the
electric field, the angle of the orbital still does not exactly coincide with the angle of the
field, exhibiting additional oscillations. The evolution is still somewhat non-adiabatic
with even such a long wavelength.

The comparison in Fig. Al shows that a much longer wavelength is required for
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the 2D driving field. This is because the 2D field also couples the degenerate p states.
Consequently, the angular frequency of the driving field needs to be much smaller than
the difference of the shifted energies of the degenerate states after the degeneracy is lifted

to achieve adiabatic control, which is much more demanding than with a 1D driving
field.

(@ 0.1 ” n ﬂ —dipole o2 () 0.1
A

—E(t
0.05 '\ '\ 0.1 0.05

Dipole
o
o

E(t) (a.u.)

-0.05 d J d 01 -0.05
-0.1 U U U -0.1
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16 17 18 19 20 21 22 -0.1 -0.05 0 0.05 0.1
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Figure Al. (a) The time-dependent dipole d(t) of the orbital in a 1D driving field,
where the intensity is I = 5 x 10 W/cm? and the wavelength is 800 nm. (b)
Lissajous figure of a counter-rotating bicircular field with 100:1 intensity ratio. (c)
The time-dependent angle of the orbital ¢ in the 2D bicircular field with intensity
and wavelength of the fundamental component being 5 x 10'* W/cm? and 4000 nm,
respectively. The transient angle of the electric field is shown by the black curve. The
angles are wrapped into the interval [—7/2,7/2]. (d) The same as (c) except that the
fundamental wavelength is increased to 28000 nm.

Detailed proof of Eq. (8)

Here, we discuss the relationship between the rotation angle ¢ of the p orbital and the

phase difference Ap. In the coordinate representation, p, and p_ orbitals can be written
as

Ups (r) = Yo(r, 0,) e, (A1)

where 7, 0,., p, are the radial distance, polar angle, and azimuthal angle in the spherical
coordinate system, respectively.
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A superposition of the two states can be expressed as

(1) = [byle e (1) + [b-|ePiy(r), (A2)

where |b4| are the absolute values of the superposition coefficients while o and 8 are
their phases. Substituting Eq. (A1) into Eq. (A2), we obtain

V)P = [Wo(r 6] -
<[(1h] = [b-1)? + 4o o] cos? (. — 20

with Ay = B — « the phase difference between |pi). In Eq. (A3), |o(r,6,)]? is
independent of ¢,, the first term in the brackets is a constant and the second term
maximizes at ¢, = Ayp/2, leading to a dumbbell distribution aligned along the direction
Ap/2.

For the final states after the excitation-free operation with the initial state p,, we
have |b| = 1/v/2 and

_Av

[ ()]* = 2[4a(r, 6, cos(pr — 7). (A4)

This corresponds to a dumbbell p-orbital rotated by an angle of ¢ = Ag/2 relative to
ps- In particular, the orbital is p, for Ap =0 and p, for Ap = 7.
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