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ABSTRACT
Two-color ionization with a strong 800 nm field and a weak orthogonal 400 nm field
allows for the retrieval of ionization times and relative amplitudes of short and long
trajectories directly from the photoelectron momentum distribution by observing
the signal as a function of the relative phase between the two fields. By numerical
solution of the time-dependent Schrödinger equation in three dimensions we show
that the amplitudes are strongly affected by Coulomb focusing. We determine these
amplitudes as a function of the lateral momentum, revealing holographic structures
in the delay scan.
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1. Introduction

Many effects in strong-field ionization of atoms and molecules can be understood
in terms of electron trajectories [1, 2, 3]. An electron is removed from an atom at
some ionization time and subsequently moves on a Newtonian trajectory in the laser
field. Some of those trajectories return to the parent ion where they can rescatter
elastically [4], or trigger high harmonic generation (HHG) [5, 6]. Electrons can absorb
more photons than required to overcome the ionization threshold, which is known as
above-threshold ionization (ATI) [7].

In ATI with a linearly polarized field, there are two fundamentally different kinds of
trajectories. The long ATI trajectories originate in a descending quarter-cycle of the
electric field and revisit the parent ion while the short ATI trajectories originate in the
ascending quarter-cycle of the electric field and do not revisit1. Both kinds of trajec-
tories can contribute to the same final momentum, leading to intracycle interference
structures in the photoelectron momentum distribution [8, 9, 10]. This is also known
as the attosecond double-slit [11]. The interference of scattered and non-scattered long
trajectories leads to photoelectron holography [12, 13].
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from the naming convention in HHG in the sense that both short and long HHG trajectories are long ATI
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Both insight into the ionization dynamics and control can be gained when combin-
ing the fundamental field with a second harmonic field, either with parallel or with
orthogonal polarization. Dudovich and others used parallel 800/400 nm fields to deter-
mine recombination times in high harmonic generation [14]. Using orthogonal fields,
it was also possible to measure ionization times [15, 16]. Further examples include the
selection of different kinds of trajectories in HHG [17], phase-of-the-phase spectroscopy
[18], spatial and temporal control of electron trajectories [19], studies on Coulomb ef-
fects [20] and the streaking double-slit experiment [21], where intracycle interference
structures can be turned on and off.

The general idea common to the schemes using a strong field and a weak orthogonal
field is that one can use the second field to distinguish contributions from different
ionization times. In the HHG ionization time retrieval [15, 16], the presence of the
second field favours a recollision of the returning electron only if ionization has taken
place at a certain time that depends on the relative phase between the two fields. In the
streaking double-slit experiment [21], short and long trajectories that would normally
contribute to the same final momentum can be separated because their ionization
times are not the same.

It was shown by numerical solution of the two-dimensional time-dependent
Schrödinger equation (TDSE) that the orthogonal two-color scheme allows for the
retrieval of ionization times for long trajectories and the determination of the relative
amplitudes of short and long trajectories directly from the photoelectron momentum
distribution [22]. The idea was that only trajectories with ionization times at a zero of
the vector potential of the second harmonic field will end up having zero momentum in
this direction. Thus scanning the on-axis signal (in direction of the fundamental field)
as a function of the two-color delay and maximizing the signal at a given momentum,
one can find the ionization times that contribute to photoelectrons with this particular
momentum. As in the earlier works using HHG, it was found that the ionization times
for the long trajectories are in good agreement with the quantum-orbit model [23, 24].
In the 2D calculations, the long trajectories dominate the on-axis signal with their
amplitude being about twice as large as for the short trajectories.

In this paper we extend these results to three dimensions and show that the dom-
inance of the long revisiting trajectories is enhanced due to Coulomb focusing [25].
Their signal is prominent in the delay scan almost up to the classical 2Up-limit for
non-scattered electrons. This allows for a refinement of the ionization time retrieval
and an extension to much higher momenta. Finally, we determine the relative ampli-
tudes of short and long trajectories for nonzero lateral momentum by investigating the
off-axis signal and we identify holographic structures in the delay scan. Atomic units
are used throughout the article unless otherwise specified.

2. Computational details

We solve the three-dimensional single-active-electron TDSE in velocity gauge
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Figure 1. 2D slices through the 3D photoelectron momentum distribution at pz = 0 (log10-scale, normalized

such that the maximum value is one). (a) Single-color case. (b) Two-color case at φ = 0. (c) Two-color case at

φ = π/2. The yellow lines represent −A(t). Momenta are in units of A0 = E0/ω.

and obtain the photoelectron momentum distribution by projecting outgoing parts of
the wave function on Volkov states [26]. Here,

V (r) = − 1 + e−αr√
r2 + 0.1

(2)

is a model soft-core potential with α optimized for the ground state to reproduce the
ionization potential Ip = 0.904 a.u. of helium. As in [22], the electric field E(t) =
−∂tA(t) is chosen as

E(t) = E0f(t) (cos(ωt)ex + ε cos(2ωt+ φ)ey) (3)

with E0 = 0.107 a.u. corresponding to an intensity of 4 × 1014 W/cm2 and ω =
0.05695 a.u. corresponding to 800 nm wavelength. f(t) is a trapezoidal envelope over
two ascending, six constant and two descending cycles of the fundamental ω-field. With
ε = 0.1, the relative field strength of the second harmonic field is weak compared to
the fundamental field. φ denots the relative phase between the two fields. The wave
function is propagated with the split-operator method [27] on a Cartesian grid with
768 points in each dimension over a length of 300 a.u. with a time step of 0.03 a.u. over
a total propagation time of 1500 a.u.

3. Results and discussion

3.1. Momentum distributions and on-axis signal

Fig. 1 shows slices through the momentum distribution at zero lateral momentum
(pz = 0) for the single-color field and for the two-color field with different values of
the delay phase φ. Also shown is the curve described by the negative of the vector
potential, −A(t), which is the final momentum of a classical photoelectron launched
with zero velocity at time t. Depending on the relative phase φ, the second harmonic
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Figure 2. (a) On-axis TDSE photoelectron momentum distribution for the single-color 800 nm field. (b)
Michelson contrast (defined as difference of highest and lowest value divided by their sum) of the dependence

on the two-color delay phase φ. (c) Variation of the signal as a function of the two-color delay phase φ and

phases of maximum signal (white line). The red lines give the positions of maxima predicted by the quantum-
orbit model (solid line) and the classical model (dashed line) for the long trajectories. Blue lines show the

equivalent information for the short trajectories. For better visibility, the signal has been normalized for each

px to vary between zero and one. We have also applied a low-pass filter in the px direction to remove spurious
oscillations in the delay scan from the low signal between the ATI peaks. Therefore the ATI peak structure is

not resolved in panels (b) and (c).

field affects short and long trajectories in a different way. For φ = 0, short and long
trajectories are deflected in opposite directions, while for φ = π/2 they are deflected
in the same direction, enhancing the visibility of intracycle interference structures as
in the streaking double-slit experiment [21].

Next we concentrate on the photoelectrons with vanishing momentum component
py = 0 in the direction of the second-harmonic field. Fig. 2(a) shows this on-axis signal
for px > 0 in the single-color 800 nm field. Fig. 2(c) shows the variation as a function
of the two-color delay phase φ. The plotted signal is normalized for each px separately
so that the signal varies between zero and one. This representation clearly shows the
φ-dependence but it does not give information on its modulation depth. Therefore, the
Michelson contrast is additionally shown in fig. 2(b). To interpret the results, fig. 2(c)
includes the predictions for maximum signal made by the classical and the quantum-
orbit model for the short and long trajectories. In the quantum-orbit model [23, 24],
the saddle point equation

1

2
(px +Ax(ti))

2 + Ip = 0 (4)

gives for every momentum px two complex ionization times tshort(px) and tlong(px) for
the short and long trajectories respectively. Here, we have neglected the weak second-
harmonic field. The maximum signal in each case is obtained when φ is chosen such
that the real part of the transverse initial velocity vanishes,

ReAy(ti(px), φ) = 0. (5)
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The results for the classical model [1] are obtained by setting Ip = 0. As in [22],
where the 2D TDSE was solved, we find that the positions of maximum signal agree
well with the predictions made by the quantum-orbit model for the long trajectories.
Moreover this agreement persists almost up to the classical limit A0 = E0/ω for non-
scattered electrons, which was not the case in the earlier 2D analysis. We also find the
oscillatory behavior that has previoulsy been explained as intracycle interferences of
short and long trajectories and allowed for the relative amplitudes of those trajectories
to be retrieved. To determine these trajectory weights from the 3D TDSE scan, we
proceed as follows. Within the quantum-orbit model we write the semiclassical action
(for py = pz = 0)

S(px, ti, φ) =

∫ ti

0
dt

[
1

2
(px +Ax(t))2 +

1

2
Ay(t, φ)2 + Ip

]
(6)

and associate complex amplitudes

a(px, φ) = eiS(px,tshort(px),φ) (7)

and

b(px, φ) = eiS(px,tlong(px),φ) (8)

with the short and long trajectories respectively. These amplitudes do not account for
Coulomb focusing. It is expected, that Coulomb focusing increases the weight of the
long trajectories in the on-axis signal. We therefore write the on-axis signal (up to a
px-dependent normalization) as

M(px, φ) = |a(px, φ) + β b(px, φ)|2 , (9)

where β gives the amplitude of the long trajectories relative to the short trajectories.
We consider β a complex number to allow for a phase shift between short and long
trajectories. Such a shift is expected due to sub-barrier Coulomb effects [28, 29, 8]. We
obtain β by a least-squares fit in the intermediate momentum region (0.4 < px/A0 <
0.6) of the curve of maximum signal from eq. (9) to the one from the TDSE, giving
|β| = 2.80 as opposed to |β| ≈ 2.3 from the 2D TDSE in [22].

Fig. 3 shows the signals obtained from the quantum-orbit model for the short trajec-
tories, the long trajectories and the superposition with relative amplitude β. While the
long trajectories give the correct positions for maximum signal on average, the super-
position of both amplitudes is required to account for the oscillations. The strengths
of these oscillations are governed by the relative amplitude.

3.2. Dependence on lateral momentum

So far, we have focused on the on-axis signal, i.e. py = pz = 0. In the following, we
keep py = 0 but we consider the signal along lines of non-zero lateral momentum pz.
Replacing Ip → Ip + p2

z/2 in eqs. (4) and (6) and repeating the analysis above, we can
use the orthogonal two-color scheme to determine the relative amplitude β of short
and long trajectories for each pz. Fig. 4 shows the absolute value and phase of β as a
function of pz. We find that β drops to |β| ≈ 1 at pz ≈ 0.12A0, indicating equal strength

5



0.0

0.2

0.4

0.6

0.8

1.0

p
x
/
A

0

(a)

0.0

0.2

0.4

0.6

0.8

1.0

p
x
/A

0

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

φ (in units of π)

0.0

0.2

0.4

0.6

0.8

1.0

p
x
/A

0

(c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3. The figure illustrates the retrieval of the weights of short and long trajectories. (a) On-axis signal

|a|2 from the quantum-orbit model for the short trajectories as a function of the two-color delay. (b) On-axis
signal |b|2 for the long trajectories. (c) |a+βb|2 for the total signal. The blue and red curves in (a), (b) are the

same lines of maximum signal as in fig. 2. The white curve in (c) marks the maxima of the combined signal for

optimized β and the yellow (dashed) curve the TDSE result. As in fig. 2, the signals have been normalized to
vary between zero and one.
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Figure 4. Lateral dependence of the absolute value (a) and phase shift (b) of the relative amplitude of short

and long trajectories. Oscillations in the absolute value can be explained as holographic interferences in the

signal from the long trajectories.

of both types of trajectories. However, there is a revival to |β| ≈ 2.2 centered at pz ≈
0.19A0. These oscillations are due to photoelectron holography [12, 13]. While in the
quantum-orbit model there is only one long trajectory for every momentum (px, pz),
scattering in the ionic potential can refocus other trajectories to the same momentum.
Thus β can be viewed as the combined weight of two types of long trajectories, which
correspond to the reference wave and scattered wave in holography. The oscillations in
β(pz) are due to interference of these two types of long trajectories. This interpretation
is further supported by the fact that the positions of minima and maxima agree well
with the holographic structures visible in the momentum distribution in fig. 1 as the
stripes that are almost parallel to the px-axis. We note that the phase of β is only
weakly dependent on the lateral momentum.

3.3. Ionization times

Finally, similar to the analysis in [22], we can reconstruct ionization times for long
trajectories. First, we remove the oscillations in the delay-scan due to short trajectories
by fitting a low-order polynomial to the curve of maximum signal in fig. 2 to get the
positions of maximum signal φmax(px) for the long trajectories alone. Then, from the
condition for maximum signal (5) we have

Re(ti) =
nπ − φmax(px)

2ω
, (10)

where in our case n = 1 selects the correct branch for long trajectories. The result
is shown in fig. 5. Again we find that the ionization times agree well with the pre-
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Figure 5. Ionization times for long trajectories from the two-color delay scan (black solid curve after removing

oscillations and dotdashed curve before), the quantum-orbit model (red, solid) and the classical model (red,

dashed). t = 0 marks the maximum of the electric field.

dictions made by the quantum-orbit model. Compared to the earlier 2D analysis, the
agreement persists to much higher momenta. The reason for this is probably that with
the increased strength of long trajectories due to Coulomb focusing, the influence of
the trajectories forming the high-energy rescattering plateau is weaker and becomes
important only at higher momenta.

4. Conclusion

We have used the orthogonal two-color scheme to extract relative amplitudes between
short and long trajectories in ATI. In the direction of the strong field, long trajectories
dominate the signal due to Coulomb focusing and are visible in the delay scan almost
up to the classical 2Up-limit for non-scattered electrons. The delay dependence of the
off-axis signal shows holographic structures. Moreover, two-color ATI offers a way to
observe ionization times in strong-field photoionization with attosecond resolution,
similar to the HHG scheme. In both cases, good agreement with the quantum-orbit
model is found, but the analysis has been limited to the long trajectories. In the
future, it might be interesting to identify regions of momentum space from which
short-trajectory ionization times could be retrieved.

5. Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft as part of the
project Momentum Distributions from Bichromatic Ionization of Atoms and Molecules
within the Priority Programme Quantum Dynamics in Tailored Intense Fields
(QUTIF, SPP 1840).

8



References

[1] Corkum, P.B.; Burnett, N.H.; Brunel, F. Above-threshold ionization
in the long-wavelength limit, Phys. Rev. Lett. 1989, 62, 1259–1262.
http://link.aps.org/doi/10.1103/PhysRevLett.62.1259.

[2] Corkum, P.B. Plasma perspective on strong field multi-
photon ionization, Phys. Rev. Lett. 1993, 71, 1994–1997.
http://link.aps.org/doi/10.1103/PhysRevLett.71.1994.

[3] Krause, J.L.; Schafer, K.J.; Kulander, K.C. High-order harmonic generation from
atoms and ions in the high intensity regime, Phys. Rev. Lett. 1992, 68, 3535–3538.
http://link.aps.org/doi/10.1103/PhysRevLett.68.3535.

[4] Paulus, G.G.; Nicklich, W.; Xu, H.; Lambropoulos, P.; Walther, H. Plateau
in above threshold ionization spectra, Phys. Rev. Lett. 1994, 72, 2851–2854.
http://link.aps.org/doi/10.1103/PhysRevLett.72.2851.

[5] McPherson, A.; Gibson, G.; Jara, H.; Johann, U.; Luk, T.S.; McIntyre, I.A.;
Boyer, K.; Rhodes, C.K. Studies of multiphoton production of vacuum-ultraviolet
radiation in the rare gases, J. Opt. Soc. Am. B 1987, 4 (4), 595–601.
http://josab.osa.org/abstract.cfm?URI=josab-4-4-595.

[6] Ferray, M.; L’Huillier, A.; Li, X.F.; Lompre, L.A.; Mainfray, G.; Manus, C.
Multiple-harmonic conversion of 1064 nm radiation in rare gases, Journal
of Physics B: Atomic, Molecular and Optical Physics 1988, 21 (3), L31.
http://stacks.iop.org/0953-4075/21/i=3/a=001.

[7] Agostini, P.; Fabre, F.; Mainfray, G.; Petite, G.; Rahman, N.K. Free-Free Tran-
sitions Following Six-Photon Ionization of Xenon Atoms, Phys. Rev. Lett. 1979,
42, 1127–1130. http://link.aps.org/doi/10.1103/PhysRevLett.42.1127.

[8] Yan, T.M.; Bauer, D. Sub-barrier Coulomb effects on the interference pattern
in tunneling-ionization photoelectron spectra, Phys. Rev. A 2012, 86, 053403.
http://link.aps.org/doi/10.1103/PhysRevA.86.053403.
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[28] Arbó, D.G.; Nagele, S.; Tong, X.M.; Xie, X.; Kitzler, M.; Burgdörfer,
J. Interference of electron wave packets in atomic ionization by
subcycle sculpted laser pulses, Phys. Rev. A 2014, 89, 043414.
http://link.aps.org/doi/10.1103/PhysRevA.89.043414.

10
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