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We report on the nonadiabatic offset of the initial electron momentum distribution in the plane of
polarization upon single ionization of argon by strong field tunneling and show how to experimentally
control the degree of nonadiabaticity. Two-color counter- and corotating fields (390 and 780 nm) are
compared to show that the nonadiabatic offset strongly depends on the temporal evolution of the laser
electric field. We introduce a simple method for the direct access to the nonadiabatic offset using two-color
counter- and corotating fields. Further, for a single-color circularly polarized field at 780 nm, we show that
the radius of the experimentally observed donutlike distribution increases for increasing momentum in the
light propagation direction. Our observed initial momentum offsets are well reproduced by the strong-field
approximation. A mechanistic picture is introduced that links the measured nonadiabatic offset to the
magnetic quantum number of virtually populated intermediate states.
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Tunneling is one of the most intriguing quantum effects,
which is well understood for transmission through a
quasistatic barrier [1]. Much less is known about the
transmission through time-dependent potential barriers.
One of the open questions is how a rotation of the tunnel’s
direction influences the momentum distribution of the
particle that exits the tunnel. For a static tunnel (adiabatic
tunneling) there is cylindrical symmetry around the tunnel
direction and thus the initial momentum after tunneling
must be isotropic in the plane perpendicular to the tunnel
direction [2,3]. For a rotating tunnel, this symmetry is
broken. This can lead to an offset momentum in (or against)
the direction in which the tunnel exit evolves with time
(nonadiabatic tunneling) [4,5].
Time-dependent potential barriers are routinely realized

by exposing an atom to a strong femtosecond laser pulse. The
joint electric field of the ionic core and the laser pulse gives
rise to a potential barrier throughwhich a bound electron can
tunnel. For circularly polarized light, the tunnel rotates in the
polarization plane. Once in the continuum, the electron will
be driven by the laser field. This will add a momentum given
by the instantaneous negative vector potential −A⃗ðtÞ to the
initial momentum the electron had at the tunnel exit p⃗i.
Including Coulomb interaction after tunneling, the post
tunneling propagation can be precisely modeled using
classical simulations [6–8]. From this, one might hope that
the question of a possible offset momentum upon exiting the
tunnel can be answered experimentally by subtracting−A⃗ðtÞ
from the measured electron momentum distribution.
However, the vector potential is significantly larger than
the expected p⃗i, and in experiments the laser intensity [and

thus −A⃗ðtÞ] is hardly known with sufficient precision. Most
previous attempts to experimentally prove the existence of
offsets in the initialmomentumdistributions at the tunnel exit
are therefore based on comparing theoretical predictionswith
experiments [9–13] (see [8,14–17] for alternative theoretical
approaches).
In the present Letter, we solve this problem by two

experimental approaches that allow us to keep the vector
potential constant while changing the degree of nonadia-
baticity. We observe that this modifies the final momenta
of the electrons significantly. This shows—almost free of
theoretical modeling—that the initial tunnel exit momenta
depend on the degree of nonadiabaticity. In the first
approach we manipulate the angular velocity of the electric
field vector using counter- and corotating two-color circu-
larly polarized fields [16,18–24]. The second approach is to
select different electron momenta in the laser propagation
direction for circularly polarized light, which is shown to be
equivalent to changing the degree of nonadiabaticity.
The two-color fields are generated using a 200 μmBBO to

frequency double a 780 nm laser pulse (KMLabs Dragon,
40 fs FWHM, 8 kHz) using the same optical setup as in
Refs. [21,25]. A spherical mirror (f ¼ 80 mm) focuses the
laser field [aperture of 8 mm (5 mm) for 780 nm (390 nm)]
into an argon gas jet produced by supersonic gas expansion.
The 3D electron momentum distributions from single ion-
ization of argon presented in this work have been measured
using cold-target recoil-ion momentum spectroscopy
(COLTRIMS) [26,27]. The momentum spectrometer is the
same as in Ref. [25].
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In our first experimental approach to investigate non-
adiabaticity, we choose the 390 nm field to be weak
compared to the 780 nm field and both contributing electric
fields to be circularly polarized.We switch the helicity of the
second harmonic every 120 seconds tomake the electric field
vectors of both colors be co- or counterrotating. Figures 1(a)
and 1(b) show the resulting combined laser electric fields and
vector potentials. The key feature is that in both cases the
minimum and maximum of the combined vector potential
are the same. The maximum (minimum) is reached when the
vector potentials of the two corresponding colors are parallel
(antiparallel). However, a decisive parameter for the non-
adiabaticity—the rotational speed of the tunnel exit—is
different. The effective angular frequency at the minimum
of the vector potential is ωeff;co ¼ ½ð1 − 2ηÞ=ð1 − ηÞ�ω ¼
0.9ω (ωeff;counter ¼ ½ð1 − 2ηÞ=ð1þ ηÞ�ω ¼ 0.7ω) for the co
(counter)rotating field (ωeff ¼ ðj _Ej=jEjÞ where E is the
instantaneous combined electric field). Here ω corresponds
to 780 nm and η ¼ ðE390=E780Þ defines the two-color field
ratio (all definitions are valid for 0 ≤ η < 0.5). Alternatively

the effective, instantaneous Keldysh parameter (γeff ¼
ðωeff=EÞ

ffiffiffiffiffiffiffi
2Ip

p
where Ip is the ionization potential) for the

time of minimal vector potential can be compared. They are
γeff;co ¼ ½ð1 − 2ηÞ=ð1 − ηÞ2�ðω=E780Þ

ffiffiffiffiffiffiffi
2Ip

p ¼ 1.3 for the
corotating and γeff;counter ¼ ½ð1 − 2ηÞ=ð1þ ηÞ2�ðω=E780Þffiffiffiffiffiffiffi
2Ip

p ¼ 0.9 for the counterrotating scenario.
Since tunneling is a highly nonlinear process, the

electron most likely escapes the atomic potential at the
peak electric field [see dots in Figs. 1(a) and 1(b)].
Figures 1(c) and 1(d) show the associated electron momen-
tum distributions (which are integrated over jpxj ¼
0.0� 0.5 a:u:). In the absence of nonadiabatic offsets the
most probable radial momentum ppeak

r ðφÞ for each angle φ
would be given by the absolute value of the corresponding
negative vector potential. Deviations to this value are
expected to be due to nonadiabatic offsets in the initial
momentum distribution or Coulomb interaction of the
electron with its parent ion.
The quantitative change of the initial momentum at the

tunnel exit can be seen best by inspecting the data
in cylindrical coordinates. Figures 2(a) and 2(b) show
the negative vector potentials from Figs. 1(a) and 1(b)

in cylindrical coordinates where Ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
y þ A2

z

q
.

Figures 2(c) and 2(d) show the same data as in Figs. 1(c)
and 1(d). The color scale encodes the intensity normalized
to the maximum value for every angle in the plane of
polarization independently. The actual intensity distribu-
tion is shown as contour lines. The plotted intensity
represents the counts divided by the radial electronmomen-

tumpr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
y þ p2

z

q
. This takes the volume elementpr into

account. We note that the Coulomb field does lead to an
angular shift of the distribution maximum in the polariza-
tion plane, which is indicated in Figs. 2(a) and 2(b).
The minimal and the maximal value for ppeak

r ðφÞ in the
corotating scenario are used as references and are marked
as dashed black lines to guide the eye. Inspecting Fig. 2(d)
it is obvious that the minimal radial momentum in the
counterrotating case is much lower than in Fig. 2(c). To
underline this result, Fig. 2(e) compares the radial momen-
tum distributions restricting the angle in the polarization
plane (see vertical blue and green dashed lines). The radial
electron momentum distributions in Fig. 2(e) are shifted by
about 0.1 a.u. relative to each other although the corre-
sponding negative vector potentials are the same in both
cases. This allows us to conclude that the offset of the initial
momentum distribution in the corotating case is bigger by
about 0.1 a.u. than in the counterrotating case.
We emphasize that the gained insight regarding the

initial nonadiabatic momenta is obtained purely from the
experimental data, without the need for an exact knowledge
of the intensity. In the next step we do some modeling in
particular to rule out the possible concern that the observed
radial momentum change could originate from differences

(a) (b)

(c) (d)

FIG. 1. Two-color field composed of a strong fundamental
(E780 ¼ 0.046 a:u:) and a weaker second harmonic (E390 ¼
0.005 a:u:) field. Both wavelengths are circularly polarized
and corotating (a) and (c) or counterrotating (b) and (d). Depend-
ing on the helicity of the second harmonic the derivative of the
electric field can be modified (phase of highest field is shown as
a dot). The angular velocity of the laser electric field for the
corotating case is ωeff ¼ 1.1ω (ωeff ¼ 0.9ω) and ωeff ¼ 0.7ω
(ωeff ¼ 1.4ω) for the counterrotating case at the maximal
(minimal) electric field. (c) and (d) show the corresponding
experimental electron momentum distributions for single ioniza-
tion of Ar. The black dashed circle guides the eye and has the
same radius in all panels. The arrows indicate the temporal
evolution of the laser electric field E⃗ðtÞ and the negative vector
potential −A⃗ðtÞ.
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in the Coulomb interaction for co- and counterrotating
fields. To this end we look at two complementary theo-
retical models in Fig. 3. First we analyze the results from
strong-field approximation (SFA), which incorporates ini-
tial momentum offsets but neglects Coulomb interaction
[28]. Neglecting preexponential factors, the momentum

dependent ionization amplitude in saddle point SFA is
proportional to exp ð−iSÞ, with the action

S ¼
Z
ts

�
1

2
ðp⃗þ A⃗ðtÞÞ2 þ Ip

�
dt ð1Þ

evaluated at its saddle points ts. The second is a classical
two-step (CTS) model that includes Coulomb interaction
but does not include any offsets in the initial momentum
distribution. Here we follow the procedure described in
Ref. [7] using the potential VðrÞ ¼ −1=r, neglecting the
semiclassical phase and using a 12 cycle laser field (total
duration, sine-square envelope). The CTS model incorpo-
rates the prediction of adiabatic tunneling, i.e., an initial
Gaussian momentum distribution that is centered at zero in
both directions perpendicular to the tunnel exit, and zero
initial momentum in tunnel direction. In particular, the
tunnel exit for each trajectory was obtained by solving
Eq. (5) from Ref. [29] and the ionization probability is
calculated according to Eq. (9) from Ref. [7].
For both models we adjust field intensities of the two

colors such that the predictions of the respective model
regarding the minimal and maximal ppeak

r ðφÞ match the
experiment for the corotating scenario, and we then use
these intensities also for the counterrotating case. The SFA
in Figs. 3(a) and 3(b) nicely reproduces the experimentally
observed shift of the radial momenta upon changing the
helicity of the second harmonic, while the classical model
does not show such a shift. This clearly rules out Coulomb
interaction as the origin of the shift and indicates that the
nonadiabatic initial momenta are reliably included in SFA.
Motivated by this success of SFAwe inspect the action in

SFA for a driving electric field in the pypz plane

S ¼
Z
ts

2
641
2

0
B@

0

py þ AyðtÞ
pz þ AzðtÞ

1
CA

2

þ Ip þ
1

2
p2
x

3
75dt: ð2Þ

We note that in SFA an increase in px is equivalent to
introducing an effective ionization potential Ieffp ¼ Ip þ 1

2
p2
x.

The effective Keldysh parameter, which is a measure for the

nonadiabaticity, can be rewritten as γeff ¼ ðωeff=E0Þ
ffiffiffiffiffiffiffiffiffi
2Ieffp

q
.

This is the idea of our second approach to change the
nonadiabaticity of the tunneling process while keeping the
vector potential constant. Because of the equivalence of Ip
and 1

2
p2
x in SFA, the electron momentum component in the

light propagation direction px is expected to influence the
nonadiabatic offset momenta.
To show this experimentally, we analyze the simplest

possible scenario: ionization by single-color circularly
polarized light. Figure 4(a) shows the resulting, well known
donut-shaped electron momentum distribution (integrated
over jpxj ¼ 0.0� 0.5 a:u:). Figure 4(b) shows the same
data as Fig. 4(a) but in cylindrical coordinates (integrating
over the angle in the polarization plane).

(a) (b)

(c)

(e)

(d)

FIG. 2. The golden line in (a) and (b) shows the negative vector
potentials from Fig. 1 in cylindrical coordinates. The minimal
vector potential is identical in (a) and (b) and marked with a long
red and a short blue arrow that indicate the two driving fields that
have antiparallel vector potentials at this time. The effective
angular frequency is not equal at this instant [ωeff ¼ 0.9ω in (a)
and ωeff ¼ 0.7ω in (b)]. (c)–(e) show the data from Fig. 1 in
cylindrical coordinates where px is the momentum component

parallel to the light propagation and pr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
y þ p2

z

q
(subset of

data with jpxj ¼ 0.15� 0.05 a:u:). The data in (c) and (d) have
been normalized columnwise. The most probable radial momen-
tum ppeak

r ðφÞ is angle dependent. The minimal and the maximal
ppeak
r in (c) are marked as black dashed lines and guide the eye in

(c) and (d). (e) shows subsets of (c) and (d), restricting the angle
to 132� 10° in (c) and 0� 10° in (d). The angular gates are
indicated by blue and green vertical lines, which are shifted with
respect to the corresponding vector potential due to the Coulomb
rotation (obtained from the CTS model). Contour lines indicate
the intensity in (c) and (d) prior to normalization of each angle
individually. The dark gray, light gray, and white lines indicate
45%, 70%, and 95% of maximal intensity, respectively.
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Figure 4(d) shows the data from Fig. 4(b), with each
column being normalized independently. The resulting
banana-like electron momentum distribution shows that
the momentum component pr strongly depends on px.
If the final electron momentum were accurately described
by the negative vector potential, the radius of the donut
would be independent of the momentum component px.
However, the experiment shows that this is not the case.
Excellent agreement with the experiment [see green dots

in Figs. 4(b) and 4(d)] is reached by performing the same
numerical CTS simulation as above, in which we now offset

the initial momentum by the px-dependent value determined
from SFA momentum distributions [momentum offset
piðpxÞ ¼ 0.18164þ 0.12825p2

x − 0.0091726p4
x]. For com-

parison the same calculation is done neglecting the Coulomb
potential after tunneling. This shows the bare offset momen-
tum from SFA [white dots in Figs. 4(b) and 4(d)]. Both
calculations use the same peak electric field, which is chosen
to fit the experiment. For comparison the black crosses in
Fig. 4 show the results from the CTS model without any
nonadiabatic offset andwith increased intensity. It is evident,
that only the full model (green data points) reaches excellent
agreement with the experiment. This result shows that the
dependence of the radial electron momentum pr on the
momentum component in the light propagation direction px
is partly due to the initial momentum distribution introduced
by the offset of the initial momentum distribution predicted
by SFA and can be fully understood including the Coulomb
interaction.
What is the origin of the nonadiabatic offset? In static

tunneling, the potential is time independent and energy

(a) (b)

(c) (d)

××

FIG. 4. Influence of the electron momentum px (along the laser
propagation direction) on pr (radial electron momentum in the
plane of polarization). (a) experimental electron momentum
distributions from single ionization of Ar by circularly polarized
light at 780 nm. (b) shows the same data as (a) but in cylindrical
coordinates. (c) illustrates the geometry at the instant of tunneling
t0: the direction of the laser electric field Eðt0Þ, the direction of
the tunnel exit r0ðt0Þ, the nonadiabatic offset (red arrow), the
negative vector potential −Aðt0Þ, and the initial momentum (pi)
distribution at the tunnel exit. (d) shows the same as (b) after
every column is normalized individually. The maximum of each
column in (b) and (d) is indicated by the black solid line to guide
the eye. The horizontal golden line shows the negative vector
potential. The classical two-step (CTS) simulation with a peak
vector potential of Amax ¼ 0.87 a:u:, including the initial momen-
tum offset from SFA, has been calculated without (white dots) and
including Coulomb interaction (green dots) of the electron with the
ion after tunneling. The black crosses show the CTS simulation for
increased peak vector potential (Amax ¼ 1.03 a:u:) and without
initial momentum offset but with Coulomb interaction.

(a) (b)

(c) (d)

(e) (g)(f)

FIG. 3. Theoretical modeling of the experimental data shown in
Fig. 2. The left column shows corotating fields, the right column,
counterrotating fields. The black dashed lines from Fig. 3(c) serve
as references in all panels. (a) and (b) show the (nonadiabatic)
SFA result neglecting intracycle interference. (c) and (d) show the
result from the (adiabatic) CTS model. The intensity has been
chosen for SFA (E780 ¼ 0.046 a:u: and E390 ¼ 0.005 a:u:) and
CTS (E780 ¼ 0.060 a:u: and E390 ¼ 0.005 a:u:) independently
such that (a) and (c) match Fig. 2(c). (e) and (f) show subsets of
(a) [(c) and Fig. 2(c)] restricting the angle to −30� 10° and
150� 10° (−48� 10° and 132� 10°). (g) shows subsets of (b)
[(d) and 2(d)] restricting the angle to 18� 10° (0� 10°). The
corresponding angular gates are indicated by colored vertical
lines. The golden lines in (a)–(d) show the negative vector
potentials. Contour lines in (a)–(d) indicate the intensity prior
to normalization as in Fig. 2. All data shown is restricted to
jpxj ¼ 0.15� 0.05 a:u.
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must be conserved. In nonadiabatic tunneling this is no
longer true. In SFA it can be seen that due to the time-
dependent laser potential the electron gains energy during
the under-the-barrier motion [30]. In another approach to
this question, Klaiber and Briggs [31] have suggested that
nonadiabatic tunneling occurs in two steps. First by
excitation to a virtual intermediate state by few photon
absorption and second by (adiabatic) tunneling from that
virtual state. For circularly polarized light the magnetic
quantum number m of the intermediate off shell state is
equal to the number of virtually absorbed photons. States
of positive m possess a ring current corotating with the
vector potential. Upon tunneling this leads to an increased
final momentum [5,25,32,33]. Assuming conservation of
angular momentum during tunneling one can estimate the
increase in pi to be given by r0 × pi ¼ m [25]. In Fig. 4
we observe pi ¼ 0.18 a:u:, which leads to m ¼ 1.8 (for
r0 ¼ 10 a:u:). This suggests that the magnetic quantum
number of the virtual intermediate state is not only
experimentally accessible but also the mechanistic origin
of the nonadiabatic offset.
In conclusion, we have experimentally shown that

tunneling through a rotating barrier exhibits nonadiabatic
features that depend on the effective angular frequency of
the laser electric field ωeff and on the effective ionization
potential Ieffp . Higher momenta in the light propagation
direction px result in higher radial momenta in the plane of
polarization pr for single-color fields. In addition to the
conceptual interest of modification of the tunneling proc-
ess, this has practical consequences as pr is routinely used
for calibration of the laser intensity [34–36]. Furthermore
our experimental two-color scheme comparing co- and
counterrotating fields with otherwise identical field param-
eters opens up new avenues to study atomic and molecular
systems investigating nonadiabaticity and the momentum
distribution of the initial state [25] free of the inevitable
uncertainties of the laser intensity.
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