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Adiabaticity in the lateral electron-momentum distribution after strong-field ionization
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By solving the time-dependent Schrödinger equation for atoms in short laser pulses of different polarizations,
it is shown that in strong-field ionization without rescattering, the lateral width of the electron-momentum
distribution corresponds adiabatically to the instantaneous laser field on a sub-laser-cycle time scale, as expected
in pure tunneling ionization. In contrast to the distributions along the polarization direction, the width is affected
little by depletion or Coulomb effects.
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Over the past three decades, rapid progress has been made in
the development of lasers capable of producing strong pulses in
the femtosecond regime. This had led to progress in many areas
ranging from above-threshold ionization (ATI) [1] over high-
order harmonic generation [2] and attosecond pulse generation
[3] to laser-induced fragmentation of molecules [4,5], to name
just a few. Many of the phenomena induced by strong fields
have been explained on the basis of tunneling ionization.
Tunneling is a purely quantum mechanical process, which
is considered as one of the main differences from classical
mechanics. Frequently, a semiclassical two-step model is
invoked, which assumes that ionization leads to the birth of
an unbound electron at the outer exit of the laser-induced
tunneling barrier. After appearing in the classically allowed
region, the electron motion is modeled by a Newtonian
trajectory [6]. This has been used for many purposes, e.g., to
derive cutoff laws in ATI [7,8], to describe Coulomb focusing
[9], to correct the strong-field approximation for elliptically
polarized fields [10], and to model the momentum distribution
in angular streaking [11]. The semiclassical model is also
the basis for the three-step model of high-order harmonic
generation [12].

For an understanding of strong-field processes it is essential
to verify the validity of the tunneling and semiclassical
pictures. Along these lines, attosecond angular streaking
[13–15], originally proposed to measure the carrier-envelope
phase of few-cycle pulses [16], has been utilized to put a
small upper limit on the tunneling delay time between the
maximum of the electric field and the appearance of the
escaping electron [17], thus giving insight into strong-field
ionization on extremely short time scales. The interpretation
of the momentum spectra in angular streaking, however, is
complicated by Coulomb effects on the electron trajectories
after tunneling and furthermore it is restricted to the intensity
range below saturation [11]. It is desirable to overcome these
limitations of angular streaking.

Recently, the importance of the lateral momentum distri-
bution, i.e., the distribution in the direction perpendicular to
the laser field, has been recognized [18–20]. If not modified
by electron recollision, the lateral distribution carries direct
information about the ionization step since there is no laser-
induced force in this direction. The tunneling ionization rate

decreases with increasing lateral momentum approximately as
a Gaussian. The width of the Gaussian is proportional to the
square root of the electric field [21]. Multiplying this tunneling
filter with the ground-state momentum distribution thus leads
to a simple product formula for the lateral distribution [22].
This has been exploited to improve [23] the measurement
of laser peak intensities via momentum distributions [24].
The measured widths from circularly polarized fields [20]
are about 15% above the values predicted by the product
formula, suggesting that nonadiabatic corrections [25] might
cause such a deviation. However, the measurement did not
show a significant wavelength dependence.

For the hydrogen atom we show, by solving the time-
dependent Schrödinger equation (TDSE), that the lateral
widths of the momentum distributions produced by infrared
fields are in excellent agreement with the exact adiabatic
widths from static calculations, without the need to invoke
nonadiabatic effects. We confirm that the width follows the
instantaneous electric field on the sub-laser-cycle time scale.
Moreover, we demonstrate that the width is, in contrast to the
momentum distribution in the field direction, only negligibly
affected by depletion and it is less sensitive to Coulomb
corrections. It can therefore serve as a more reliable observable
in angular streaking. Results for higher laser frequencies
suggest that nonadiabatic effects tend to narrow the lateral
distribution, in contrast to the widening predicted by the
nonadiabatic corrections to the tunneling formula [20,25].

We perform TDSE simulations in cylindrical coordinates
for the H atom in linearly polarized (LP) half-cycle pulses as
well as full three-dimensional (3D) calculations for circularly
polarized (CP) few-cycle pulses. These special cases have
been selected to avoid contamination by recollisions. The laser
frequency ω is 0.0569 a.u., corresponding to a wavelength of
800 nm, except when specified differently. The TDSE reads
(atomic units are used throughout, i.e., h̄ = e = me = 1)

i∂tψ = [−∇2/2 + v(r) + W (t)]ψ, (1)

where W (t) is the laser-atom interaction in the dipole
approximation and v(r) is the atomic potential. The wave
function is propagated using the split-operator method [26].
In the case of the LP half-cycle pulse, we use the length
gauge W (t) = r · E(t) = zE0 sin(ωt), with the electric-field
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amplitude E0 and the potential v(r) = −1/r of the H atom.
Here we solve the TDSE in cylindrical coordinates with a
time step of 0.0125 a.u. on a grid with 1536 points in the
radial direction and 6144 points in the field direction, covering
lengths of 225 and 900 a.u., respectively. The propagation
is continued after the pulse until the electron wave packet is
sufficiently far from the nucleus to neglect the Coulomb field.
We then obtain the final momentum distribution |ψ̃(k)|2 from
the outgoing wave packet. In the case of the three-cycle CP
laser pulse, we use the velocity gauge W (t) = p · A(t), with
the vector potential

A(t) = A0 sin2(ωt/6)[ex sin(ωt) − ey cos(ωt)] (2)

for t ∈ [0; 6π/ω]. The electric field E(t) = −Ȧ(t) has the
maximum strength E0 = A0ω. To keep the 3D CP simulations
manageable for high intensities, we employ a soft-core
potential v(r) = −1/

√
r2 + 0.2, which yields the ground-state

energy −0.364 a.u. The grid comprises 512 points for a length
of 400 a.u. in each Cartesian coordinate and the time step
is 0.32 a.u. The final momentum distribution |ψ̃(k)|2 of the
outgoing electrons is obtained as in Ref. [27].

For analysis of the LP results, we calculate the longitudinal
momentum distribution

P LP(kz) =
∫∫

dkxdky |ψ̃(kx,ky,kz)|2 (3)

and lateral distributions

QLP
kz

(k⊥) =
∫

dkx |ψ̃(kx,k⊥,kz)|2 (4)

at every kz. Here and in the following, k⊥ always denotes
a momentum component perpendicular to the electric field.
Analogously, in the case of the CP calculation, we compute
the angular distribution over the azimuth ϕ,

P CP(ϕ) =
∫∫

dk⊥dk‖k‖|ψ̃(k‖ cos ϕ,k‖ sin ϕ,k⊥)|2, (5)

and lateral distributions

QCP
ϕ (k⊥) =

∫ ∞

ki

dk‖k‖|ψ̃(k‖ cos ϕ,k‖ sin ϕ,k⊥)|2 (6)

at every angle ϕ. The integration normally starts at ki = 0, but
ki is set to larger values for high laser intensities, as explained
later.

In a semiclassical two-step model accounting for depletion,
the momentum distributions are written as [28]

P LP or CP(q) = dN/dq = Nb(t0) �(E(t0)) dt0/dq, (7)

with q = kz for the LP half-cycle pulse and q = ϕ for the CP
pulse. In Eq. (7), dN is the number of escaping electrons in
the range from q to q + dq. The number of bound electrons
Nb(t0) is taken from the solution of the TDSE. It accounts for
depletion effects. The ionization rate �(E) in a static electric
field E provides the instantaneous ionization rate at the time
of ionization t0. The values for � are taken from the literature
[29–31] in the case of the half-cycle pulse. For the CP pulse,
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FIG. 1. (Color online) (a) Longitudinal momentum distribution
P LP(kz) at E0 = 0.12 a.u. and (b) angular distribution P CP(ϕ) at
E0 = 0.027 a.u. from the TDSE and the two semiclassical SM and
CC models.

� is approximated using the tunneling formula [32]

�(E) = �0 exp[−2(2Ip)3/2/3E], (8)

with the ionization potential Ip. The pre-exponential factor �0

is adjusted to match the TDSE results. The relation between
the initial time t0 and the final momentum kz (final angle
ϕ) is evaluated using classical trajectories within two different
models: (i) the simple man’s (SM) model, in which the force on
the electron includes only the laser field, and (ii) the Coulomb
corrected (CC) model, accounting also for the interaction with
the nucleus. In both models, the initial velocity of the electron
is zero [33], except when the laser intensity is in the over-the-
barrier ionization region [34] in the CC model. In this case,
the initial velocity is set equal to

√
2{E0 − [v(r0) + E(t0) · r0]},

with the ground-state energy E0 and the starting point r0 of the
electron trajectory. In the over-the-barrier ionization region,
r0 is chosen to be the saddle point of the barrier function
v(r) + E(t) · r, while for lower intensities it is set equal to
the tunneling exit. In the LP calculations, the ground-state
energy E0 has been modified to account for the Stark shift and
we use the decoupled equations in parabolic coordinates for
calculating the starting point [35] as well as the subsequent
classical trajectories.

Typical results for the longitudinal and angular distributions
from moderate fields are shown in Fig. 1. They confirm
our expectation of finding the strongest ionization near the
time of maximum electric field, i.e., midpulse, leading to
maximum emission near kz = −E0/ω in the LP case and
near the angle ϕ = 270◦ in the CP case. Both SM and CC
models are in reasonable agreement with the TDSE results.
Momentum distributions from the CP calculation, integrated
along kz, are shown in Fig. 2 for two different intensites.
For the lower intensity, we find the maximum emission at
approximately ϕ = 270◦, whereas for the higher intensitiy,
we observe strong depletion, shifting the maximum emission
toward earlier times, corresponding to angles of approximately
90◦ [see Fig. 2(b)].

The purpose of this Rapid Communication is a precise
investigation of the lateral width and a comparison with
tunneling and exact adiabatic calculations. According to the
simplified tunneling model, the lateral distribution has the
product form [20,22]

Q(k⊥) = Q0(k⊥) exp(−k2
⊥τ ), (9)
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FIG. 2. (Color online) Momentum distribution from three-cycle
CP pulses, integrated along kz into the xy plane of polarization at
(a) E0 = 0.046 a.u. and (b) E0 = 0.084 a.u. The dotted curves show
the predictions of the SM model, while the solid black curve in (b)
indicates the lower integration limit ki for Eq. (6).

where τ = √
2Ip/E(t0) is the tunneling time for ionization at

t0. The weakly field-dependent Q0(k⊥) is obtained from the
ground-state momentum distribution ψ̃0(kx,ky,kz) as

Q0(k⊥) =
∫∫

dk‖dk′
⊥|ψ̃0(k‖,k′

⊥,k⊥)|2 exp(−k′
⊥

2
τ ). (10)

For the LP pulse, we additionally calculate the exact
adiabatic lateral distribution, where we exploit the fact that
the static Schrödinger equation (SSE) for the H atom in a
static field,

(−∇2/2 − 1/r + Ez)ψ0 = Eψ0, (11)

is separable via ψ0 = M(μ)N (ν) exp(imϕ) in squared
parabolic coordinates μ,ν,ϕ [30], such that x = μν cos ϕ,
y = μν sin ϕ, and z = 1/2(μ2 − ν2). We solve the SSE with
outgoing boundary conditions [30]. The complex energies
E = E0 − i�/2, with the Stark-shifted ground-state energy E0

and the ionization rate �, are taken from Refs. [29–31].
The resulting lateral distributions QLP

kz
(k⊥) and QCP

ϕ (k⊥),
both from the TDSE and the models, are fitted to Gaussians
exp(−k2

⊥/σ 2) to obtain the lateral widths σ LP(kz) and σ CP(ϕ),
respectively. In the case of very strong fields (distinct depletion
effects), contributions from more than one optical cycle
contribute to emission at the same angle, but with different
energies, as can be seen in Fig. 2(b). Here the lower integration
limit ki in Eq. (6) has been chosen such that between 180◦ and
360◦ only the contribution from the central half cycle enters
into QCP

ϕ (k⊥), as indicated by the black solid circle in Fig. 2(b).
The calculated widths are shown in Fig. 3. For this figure the

SM model is used to link the final momentum (final angle) to
the instantaneous field needed by the adiabatic and tunneling
models. In agreement with the SM model, the TDSE widths
σ LP(kz) and σ CP(ϕ) maximize at kz = −E0/ω and ϕ = 270◦,
respectively. Furthermore, it is striking how the width follows
the instantaneous field strength on a sub-laser-cycle time scale.
In fact, for the LP pulse there is excellent agreement between
the TDSE width and the adiabatic width from the SSE, even
in the case of the dramatic depletion shown in Fig. 3(a), where
the maximum signal is shifted to a longitudinal momentum
far from kz = −E0/ω. We have also numerically confirmed
for the soft-core potential that the maximum widths from a
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FIG. 3. (Color online) (a) Width σ LP(kz) obtained at E0 = 0.2 a.u.
from the TDSE, the exact adiabatic model, and the tunneling
model. (b) Width σ CP(ϕ) obtained at E0 = 0.027 a.u. from the
TDSE and the tunneling model. Also shown are the corresponding
TDSE longitudinal and angular distributions P LP(kz) and P CP(ϕ),
respectively (not to scale). Tunneling model refers to the tunneling
product formula [Eq. (9)] combined with the SM model.

half-cycle LP pulse and from the three-cycle CP pulse differ
negligibly (not shown).

Our results suggest a streaking technique that links the
maximum of the instantaneous field to the maximum measured
width instead of the maximum measured signal as in [13]. To
this end we find the locations and values of the maxima over a
broad range of laser intensities. In view of the wiggles found
in the low-intensity angular dependence of the TDSE width
σ CP(ϕ) [see Fig. 3(b)], we find the maximum after convoluting
with a Gaussian exp[−0.5(ϕ/δ)2] with δ = 30◦ for low fields
up to E0 = 0.05 a.u. and δ = 15◦ for stronger fields. The same
procedure was applied to the angular distributions.

The positions of the maxima are shown in Figs. 4
and 5. In the case of the LP half-cycle pulse, we observe in the
TDSE calculation a shift of the maximum of the longitudinal
distribution to momenta with absolute values below E0/ω for
small fields and a shift to higher values for strong fields
[Fig. 4(a)]. Only in the intermediate region around E0 ≈
0.1 a.u. is the maximum really located at −E0/ω. Analogously,
we find that the maximum of the angular distribution in the
case of the CP pulse is shifted toward greater angles for low
fields and to smaller angles ϕ for strong fields [Fig. 5(a)].
The shift at high fields can mostly be explained by the
depletion effect [16], which simply shifts the most likely
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FIG. 4. (Color online) Position of the maximum in the (a)
longitudinal distribution P LP(kz) and (b) lateral width σ LP(kz), plotted
versus field amplitude for the LP pulse.
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FIG. 5. (Color online) Positions of maxima in the (a) angular
distribution P CP(ϕ) and (b) width σ CP(ϕ), plotted versus field
amplitude for the CP pulse. The vertical line in (b) is due to trajectories
that do not escape the core potential.

starting time t0 to earlier times. However, if we compare the
TDSE curves to the predictions of the SM model including
depletion, we observe that a difference remains. This could
indicate some unknown fundamental effects, such as an initial
velocity [36]. The shift at small fields is explained mainly
by Coulomb corrections. The CC model improves the SM
model, except near the barrier-suppression field. For the LP
pulse, this could be confirmed only for amplitudes below the
barrier-suppression field (due to nonunique mapping from kz

to t0 for higher fields), which is at approximately 0.157 a.u.
in the H atom (the LP calculation) compared to 0.033 a.u.
for the soft-core potential (the CP calculation). Note that the
large difference between these two values stems mainly from
the decoupling in parabolic coordinates for the LP pulse [35].
In contrast to the maxima in the signal, the positions of the
maxima in the lateral width depend only weakly on the field
amplitude [see Figs. 4 and 5(b)]. They stay close to the position
that corresponds to ionization at the peak of the laser field,
i.e., kz = −E0/ω and ϕ = 270◦, respectively. These results
demonstrate the robustness of the width against depletion.

Figure 6(a) shows the maximum values of the lateral width
σ LP

max(E0) versus field amplitude E0. In agreement with the
analysis of the experimental data in Ref. [20], we observe
that the widths predicted by the tunneling product formula are
consistently too small (also for the few-cycle CP pulse, which
is not shown). In contrast, the exact adiabatic model agrees
with great accuracy with the TDSE results. To investigate
the question of nonadiabaticity, we performed additional
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FIG. 6. (Color online) (a) Maximum widths σ LP
max(E0) from the

TDSE, from the tunneling product formula, and from the exact
adiabatic model versus field amplitude E0. Also shown is the width at
the maximum of the longitudinal distribution. Shown on the right is
the width σ LP(kz) versus longitudinal momentum for (b) 1600 nm and
E0 = 0.10 a.u., (c) 800 nm and E0 = 0.12 a.u., and (d) 400 nm and
E0 = 0.14 a.u. The total ionization probability was approximately
0.5 in each case.

calculations at wavelengths of 400 and 1600 nm [see
Figs. 6(b)–6(d)]. For small wavelengths (λ = 400 nm), we ob-
serve deviations of the TDSE widths from the exact adiabatic
model. Interestingly, the TDSE tends to predict smaller widths
than the adiabatic model, which is in conflict with the trend
predicted by nonadiabatic corrections to the tunneling formula
[20,25]. In fact, our finding is similar to the small measured
nonadiabatic shift [20], which was within the experimental
error bars. We mention that we have performed preliminary
calculations of the width using the strong-field approximation
beyond the saddle-point approximation, showing agreement
with the TDSE and not with the tunneling product formula
[Eq. (9)].

We have reported a thorough analysis of the lateral
width in recollision-free strong-field ionization, leading to the
conclusions that (i) the width follows the instantaneous electric
field, (ii) it is nearly perfectly adiabatic, and (iii) it is robust
against depletion and Coulomb effects. Measurement of the
lateral distribution provides a valuable tool to determine field
strength and carrier-envelope offset for circularly polarized
few-cycle pulses. It will also shine additional light on the
search for a tunneling delay time.

This work was supported by the Deutsche Forschungsge-
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