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1 Introduction

High–order harmonic generation (HHG) [1, 2] is a phenomenon induced by

intense laser fields. It refers to the conversion of a large number of laser

photons into a single photon of high frequency. The generated frequencies

are called high harmonics since they are — for sufficiently long incident laser

pulses — integer multiples of the laser frequency. The generated radiation

is coherent and therefore has properties similar to laser light: it emerges

as a directed beam and can be temporally compressed into short pulses.

The exact mechanism of the multiphoton process that produces harmonics

depends on the target of laser irradiation. Harmonics from laser–plasma

interaction have received much attention and bear great potential for the

future [3], but these will not be discussed in this review. In the present–day

applications, one works mostly with gas–phase harmonics, i.e. radiation

emitted from atoms or molecules in a gas jet. Rare–gas atoms are the most

frequently used target since they produce harmonics relatively efficiently.

Nevertheless the intensity of the generated harmonics is generally small,

namely about 10−5 or less of the incident laser light intensity. In typical

experimental setups, laser pulses from Ti:Sapphire oscillators, i.e., with

wavelengths around 800 nm are used, and the harmonics range from the

ultraviolet into the soft x-ray regime.

The gas–phase harmonics are — for high enough intensities — due

to a three–step mechanism [4, 5]. In the first step, the system (atom or

molecule) is ionized by the strong laser field; in the second step, the free

electron is accelerated by the oscillating electric field of the laser pulse, and

in the third step the electron returns to the positively charged core and can

recombine under emission of a photon. The energy of this photon equals

the kinetic energy of the returning electron plus the binding energy of the

electron in the ground state of the system. For strong enough laser fields,

the excursion length of the electron is much larger than the size of the atom,

so that the motion of the continuum electron can be described classically in

good approximation. The intuitive three–step model is based on the qua-

sistatic picture of laser–atom interactions: changes of the time–dependent

electric field are slow compared to the motion of bound electrons in the

atomic ground state. This means that the ionization and recombination

can be understood as nearly instantaneous events during which the value

of the electric field is constant. The typical laser intensities are between

1014 and 1015 W/cm2. The forces that the electric fields of such laser pulses

exert on electrons are nearly as high as the forces between the nuclei and
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the bound electrons. Therefore, the theoretical description must go beyond

perturbation theory in the external field. On the other hand, the intensity

is still below the regime where the magnetic field of the laser pulses or rel-

ativistic motion of the electrons start to play a role. It is therefore safe to

employ the dipole approximation, where the magnetic field is neglected and

the electron dynamics is described by the non-relativistic time–dependent

Schrödinger equation (TDSE).

The recollision, the final step in the three–step model occurs on a time

scale much faster than the optical period of the laser field, which is typically

2–3 fs. Therefore, recollisions give rise to attosecond bursts of harmonic ra-

diation (1 as = 10−18 s.) The generation of attosecond pulses has been

one of the main areas of research within laser–matter interactions in recent

years [6–12]. The current record in the production of the shortest isolated

attosecond pulses is at 130 attoseconds pulse length [13]. With these ex-

tremely short pulses it is becoming possible to experimentally observe elec-

tronic motion in time, similarly to the observation of chemical reactions

with femtosecond pulses. In femtochemistry [14], the pump–probe scheme

is the standard method to observe dynamics: a femtosecond pump pulse

starts a time–dependent process, and a femtosecond probe pulse is applied

after a delay time to probe the state of the system. Since attosecond pulses

are not strong enough yet to allow for attosecond–pump attosecond–probe

schemes, one resorts to cross–correlation techniques where an attosecond

pulse serves as the pump pulse and an infrared laser pulse probes the time

evolution.

Besides using HHG as a light source for further applications, the last

years have revealed that harmonics can also be exploited to obtain infor-

mation about molecular properties [15–18]. Since the recombination step

must lead back into the initial state of the molecule in order to give rise

to coherent emission, the recombination probability depends strongly on

the initial–state electronic wave function. Hence, HHG is very sensitive

to the structure of the molecule. Furthermore, it is affected by any de-

viations of the molecular geometry from the initial geometry caused by

the motion of the nuclei in the time between ionization and recombina-

tion. We will show in this review how these effects can be used towards

the measurement of molecular structure and dynamics. Increasing efforts

are presently made to pursue HHG from molecules. In particular, HHG

with ensembles of laser–aligned molecules [19, 20] plays a central role. For

example, alignment techniques opened the possibility to image molecular

structure using the molecular–orbital tomography proposed by Itatani et
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al. [16], which has attracted a tremendous amount of interest. The promise

of such schemes is that they combine structure determination with the

ultrahigh time resolution offered by femtosecond pulses. Even measure-

ments with sub–femtosecond resolution have been achieved by exploiting

the sub–laser–cycle duration of the recollision process [18]: electron wave

packets can serve as an attosecond probe and therefore provide an alterna-

tive approach to attosecond physics, without the need for attosecond light

pulses. This idea was used not only in HHG but also in the earlier work on

recollision–induced molecular fragmentation [21, 22] where one measures

fragment kinetic energies rather than harmonics.

The challenge for theoretical physics is twofold. On one hand, ab initio

calculations are needed that aim for quantitative agreement with experi-

ment. On the other hand, approximate models are equally important since

they give more insight into the mechanisms of HHG, and since they pro-

vide the basis for schemes of molecular imaging using HHG. The theory of

HHG consists of two building blocks: (i) the single–atom/single–molecule

response to the laser field and (ii) the propagation of the laser field and the

harmonics through the generating medium. We will concentrate on the first

part only since we are interested in the signature of molecular properties in

HHG.

The purpose of this article is to give a basic and easily accessible intro-

duction into the theory of molecular HHG and to review the current devel-

opments in this field. In the following we will use atomic units, i.e. me = 1,

e = 1, ~ = 1, 4πǫ0 = 1 whereme is the electron mass and e is the elementary

charge. This means that the charge of the electron is qe = −e = −1.

2 Theory of high–order harmonic generation

2.1 Basic theory

As explained in the introduction, the solution of the time–dependent

Schrödinger equation is required to describe theoretically the interaction

between molecules and the strong light fields of interest here. The Hamil-

tonian H consists of the unperturbed part H0 and the laser–molecule in-

teraction Hint. In the dipole approximation, the electric field E(t) of the

laser pulse couples to the dipole operator D of the system so that the in-

teraction is Hint = −D ·E(t). For fixed nuclei, the dipole operator depends

on all the electron coordinates rj , namely D = −
∑

j rj . We begin the dis-

cussion of the theory with the single–active–electron (SAE) approximation,
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where we treat only one of the electrons as interacting with the laser field,

while all other electrons remain “frozen”, i.e., they merely give rise to an

effective, time–independent potential for the active electron. We then have

H0 = p2/2 + V (r) and Hint = r · E(t) with r being the coordinate of the

active electron and V the effective potential. The Hamiltonian in the form

H(t) =
p2

2
+ V (r) + r ·E(t) (1)

is commonly known as the length–gauge Hamiltonian because the laser field

couples to the “length” r. An alternative treatment is the velocity gauge,

where the Hamiltonian has the form

H(t) =
(p + A(t))2

2
+ V (r) (2)

with A(t) = −
∫ t

−∞
E(t′) dt′. Here, the laser–molecule interaction

Hint = p ·A(t) +A(t)2/2 is governed by the canonical momentum p,

which, for a free electron, can be interpreted as a drift velocity. A third pos-

sibility is the treatment in the acceleration gauge or Kramers–Henneberger

frame [23–27], which is the formulation in the accelerated reference frame

of a free electron driven by the laser field. We will not discuss this approach

in detail here. Observables have the same value independent of the chosen

gauge as long as the TDSE is solved exactly. As soon as approximations are

made, different gauges lead to different results. This happens for example if

the calculation is carried out on a too small numerical grid or if one applies

approximate schemes such as the strong–field approximation (SFA) that is

described later in this review.

If the TDSE can be solved, we have the wave function Ψ(t) at all times,

and the next task is the calculation of the HHG spectrum. In classical

electrodynamics, the spectrum of the dipole radiation emitted from a time–

varying charge distribution is the power spectrum of the dipole acceleration,

i.e.,

S(ω) ∼ |a(ω)|2 (3)

where a(ω) =
∫

dt a(t) exp(iωt) is the Fourier transform of the dipole accel-

eration a(t). In quantum mechanics, the same equation holds if the time–

dependent expectation value of the dipole acceleration is used in place of

a(t), i.e., a(t) = 〈â(t)〉 [28–31]. The dipole acceleration operator for one

electron is â(t) = ∇V + E(t). In the last equation, we have taken into

account that the electron has negative charge.

The resulting spectrum then contains only the coherent part of radia-

tion, i.e., no spontaneous decay of excited states is included. One may ask
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Fig. 1 Illustration of high–order harmonic generation as absorption and emission of
photons.

what is the appropriate time interval over which the Fourier transforma-

tion of the acceleration should be evaluated. In principle, the integration

runs over all times. But this is both impossible to do in a numerical cal-

culation and also it would cause problems because an excited state will

never decay to the ground state after the laser field has been turned off and

therefore oscillations of the acceleration will continue indefinitely. (This

is a shortcoming of the TDSE which treats the electromagnetic field clas-

sically.) Hence, in a practical calculation one normally works with laser

pulses of finite duration Tp and the Fourier transform is taken only over

the duration Tp,

a(ω) =

Tp
∫

0

dt a(t) exp(iωt). (4)

Nevertheless, one may sometimes choose a somewhat longer integration

interval in order to obtain a more accurate harmonic spectrum. Notice

that alternatively the spectrum can be calculated by first evaluating the

time–dependent dipole moment and then taking the double derivative to

obtain the dipole acceleration. This choice plays an important role in the

context on the strong–field approximation, see Section 2.3. However, when

harmonic spectra are calculated from the numerical solution of the TDSE,

the method of choice is to evaluate the time–dependent dipole acceleration

a(t) directly as the expectation value of the acceleration operator. It is less

sensitive than the dipole moment to electron density far away from the nu-

cleus and is thus less affected by the use of absorbing boundary conditions.

Therefore the acceleration form usually produces a lower background noise

level in the HHG spectra.
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In the photon picture, HHG is understood as the absorption of a large

number of photons from the incident laser field followed by emission of the

absorbed energy in the form of one high–frequency photon, see Fig. 1. If

the laser pulse has a small bandwidth, i.e., the laser photon frequency has a

sharp value, the harmonic emission spectrum will exhibit discrete frequen-

cies, which are approximately integer multiples of the laser frequency.

2.2 Three–step model

A physical picture that is extremely useful to understand HHG is the semi-

classical three–step model [4, 5]. It rests on the assumption that the laser–

molecule interaction is approximately quasistatic, i.e., it is meaningful to

describe the interaction in terms of an instantaneous electric field. At time

t during the action of a laser pulse, the field–free binding potential V0 for

the active electron is distorted by the presence of the instantaneous electric

field E(t). The total potential is

V (r) = V0(r) + E(t) · r. (5)

In the quasistatic picture, the change of the electric field is slow compared

to the bound–state electronic motion so that the electron wave function ad-

justs to the modified potential and the electron has time to tunnel through

the potential barrier into the exterior region. The tunneling ionization pro-

cess is shown schematically in Fig. 1. After ionization at a time t0 (first

step), the electron is strongly accelerated by the laser field with little in-

fluence from the binding potential. The electron dynamics can then be

described classically in a good approximation. Since the electric field of a

laser pulse oscillates, the electron will follow an oscillatory motion (second

step). If the electron starts with zero velocity and the laser field is lin-

early polarized, the classical trajectory will be along a straight line, namely

the laser polarization axis. For a monochromatic field polarized along the

z-axis with electric field strength E(t) = E0 sin(ωt), one can immediately

solve Newton’s equation of motion, and one finds that the electron velocity

ż(t) is the sum of a sinusoidally oscillating term and a drift velocity,

ż(t) = αω cos (ωt) − αω cos (ωt0). (6)

Here,

α =
E0

ω2
(7)

is the classical oscillation amplitude. The oscillation gives rise to a higher

mean kinetic energy than from the drift velocity vD = −αω cos (ωt0) alone.
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Fig. 2 Tunneling ionization in a diatomic molecule under the influence of an instanta-
neous electric field E directed along the negative z-axis.

This additional kinetic energy due to the presence of the laser field is known

as the ponderomotive potential

Up =
E2

0

4ω2
. (8)

If the electron starts at a suitable phase of the laser field, the trajectory

can lead back to the core so that an electron–ion collision takes place (third

step). With a small probability, the recollision causes recombination under

emission of a photon — the high–harmonic photon. For a given starting

time t0, there may be zero, one or more solutions for the return time t1.

We refer to the difference τ = t1− t0 as the travel time or excursion time of

the electron. For a monochromatic, i.e. purely sinusoidal time–dependence

of the laser field, the kinetic electron energy at the time of return, Er,

can be shown to have the maximum value Er,max ≈ 3.17Up [5]. In HHG,

the emitted photon energy equals return energy plus binding energy of

the electron in the ground state. This means that the cutoff in the HHG

spectrum is at the photon energy 3.17Up + Ip, where Ip is the ionization

potential of the molecule. Quantum mechanical corrections lead to the

slightly modified cutoff 3.17Up + 1.32 Ip [32].

A given return energy can be realized by not only one but at least two

different electron trajectories, known as the short and long trajectories.
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Most HHG experiments are set up such that — taking advantage of the

phase matching conditions for the generation of harmonics in a focused

beam — only the short trajectories contribute significantly to the HHG

spectrum [33–35]. For these short trajectories, one can fit the relation

between the return energy and the travel time obtained from the classical

model as

ωτ = 0.786[f(Er/Up)]
1.207 + 3.304[f(Er/Up)]

0.492, (9)

where f(x) = arccos(1 − x/1.5866)/π. The fact that different return ener-

gies correspond to different return times t1 makes the harmonic frequency

dependent upon the emission time, i.e., the harmonic radiation is chirped

on a sub–femtosecond time scale [7].

From the three–step model it is apparent that harmonics are usually

strongly suppressed when elliptical or circular laser polarization is used,

because electrons starting with zero velocity do not return to the parent

ion. We will see below, however, that an anomalous ellipticity dependence

of harmonics may result from the initial electron momentum distribution.

2.3 The strong–field approximation

In order to arrive at a model that is capable of quantitatively predicting

HHG spectra, we formulate the quantum mechanical version of the three–

step model, which is known as the Lewenstein model or the strong–field

approximation [32]. In the most widely used version of this theory, one

first derives an expression for the time–dependent dipole moment D(t) due

to the response of a single atom/molecule. Its dipole acceleration is then

obtained as

a(t) = D̈(t), (10)

and the HHG spectrum is calculated as described in Section 2.1. We re-

strict ourselves to the single–molecule response and do not investigate prop-

agation effects. Furthermore, we begin with the length–gauge formulation

based on the Hamiltonian (1) and with the assumption of fixed nuclei. In

the strong–field approximation, one assumes that (i) the electron is unaf-

fected by the laser field until the time t′ of ionization and (ii) afterwards

the electron moves in the laser field only, unaffected by the binding poten-

tial. We also neglect the depletion of the bound state (which could be taken

into account in principle). For a linearly polarized laser pulse with arbitrary

electric field E(t) such that E(t < 0) = 0, this leads to the dipole moment
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(without terms corresponding to continuum–continuum transitions) [32]

D(t) = −i

t
∫

0

dt′
∫

d3p d∗

r

(

p + A(t)
)

di

(

p + A(t′), t′
)

× exp
(

− iS(p, t′, t)
)

+ c.c. (11)

where S(p, t′, t) =
∫ t

t′ dt′′[(p+A(t′′))2/2+Ip] is the semiclassical action, Ip

is the ionization potential, A(t) = −
∫ t

−∞
E(t′)dt′, and the ionization and

recombination matrix elements are given by

di(p, t) = 〈ψPW(p)|E(t)z|ψ0〉, (12)

dr(p) = 〈ψPW(p)| − r|ψ0〉. (13)

Here, ψ0 is the field–free ground state, and ψPW(p) denote plane–

wave states with momentum p, normalized in the momentum scale, i.e.,

〈ψPW(p)|ψPW(p′)〉 = δ(p − p′). The appearance of plane waves is the es-

sential point of the SFA. It facilitates partially analytical computation, but

is the main source of errors at the same time.

The SFA expression (11) for the electronic dipole moment can be ob-

tained in different ways: One way is to follow the original approach of [32],

where an ansatz is made for the wave function. This ansatz, together with

the aforementioned assumptions about the physical process lead to the re-

sults of Eq. (11). Another way, more straightforward, is based on the Dyson

equation for the evolution operator:

Û(t, t′) = Û0(t, t
′) − i

∫ t

t′
dt′′ Û(t, t′′)E(t′′)zÛ0(t

′′, t′), (14)

where Û0 stands for the evolution operator associated with the field–free

Hamiltonian. This is an integral equation, whose solution can be approx-

imated by replacing in the right–hand side the full evolution operator Û

by the Volkov propagator ÛV. The latter describes the evolution of an

unbound electron under the influence of the electric field of the laser only.

The replacement assumes that the main influence on the electron dynamics

comes from the laser field and less from the binding Coulomb potential,

which does not play any role between the ionization time t′′ and the re-

combination time t in (14). As a consequence, the low–energy part of the

harmonic spectrum is poorly represented. One reason is that in this energy

interval the bound–bound dynamics plays a significant role. As a general

remark, low energy electrons (responsible for the emission of low–energy

harmonics) ‘feel’ more than high–energy electrons the influence of the bind-

ing potential. For this reason, the SFA does not reproduce satisfactorily
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the above–threshold ionization spectrum close to zero kinetic energy of the

emitted electron, but it describes well the high–energy electrons.

With this in mind, the SFA expression for the evolution operator reads

ÛSFA(t, t′) = Û0(t, t
′) − i

∫ t

t′
dt′′ ÛV(t, t′′)E(t′′)zÛ0(t

′′, t′). (15)

Once the evolution operator is approximated as in Eq. (15), the electronic

dipole moment can be easily calculated by inserting the approximated wave

function ψ(t) = ÛSFA(t, 0)ψ0 in the expression for the electron dipole

moment D(t) = 〈ψ(t)| − r|ψ(t)〉. The continuum–continuum transitions

[i.e., the terms containing two integral terms from the right–hand side of

Eq. (15)] are ignored, since they do not contribute significantly to the har-

monic spectrum. One intermediate step to obtaining the result (11) is to

replace the Volkov propagator by its spectral decomposition:

ÛV(t, t′) =

∫

d3p |ψV(p, t) 〉〈ψV(p, t′)|, (16)

with ψV(p, t) the Volkov solution [36] in the length gauge of an electron

with canonical momentum p:

|ψV(p, t)〉 = |ψPW(p + A(t))〉 exp

(

−i

∫ t

dt′′
(p + A(t′′))2

2

)

. (17)

The Volkov solutions describe a free electron moving in the electric field

of the laser only. The resulting integral over momenta in Eq. (11) can be

approximated as described in the following.

In practice, saddle–point approximations are additionally applied to the

integral in Eq. (11) [32, 37]. The most straightforward approach is to regard

the matrix elements as slowly varying functions of the momentum p while

the phase factor exp(−iS) oscillates rapidly as a function of p. One can

then find the saddle–point momentum ps where the phase is stationary,

i.e., ∇pS(p, t′, t)|p=ps
= 0,

ps(t
′, t) = −

t
∫

t′

A(t′′)/(t− t′)dt′′. (18)

The saddle–point approximation assumes that the integral is dominated by

the integrand around ps. Thus the matrix elements are evaluated at ps,

and the action is replaced by a second–order Taylor expansion in p around

ps. Carrying out the integration over momenta leads to [32, 37]

D(t) = −i

t
∫

0

dt′
[

2π

ǫ+ i(t− t′)

]3/2

d∗

r

(

ps(t
′, t) + A(t)

)

di

(

ps(t
′, t) + A(t′), t′

)

× exp
(

−iS
(

ps(t
′, t), t′, t

))

+ c.c. (19)
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So far, we have introduced the standard form of the Lewenstein model, but

alternatively one may calculate the dipole acceleration by directly evaluat-

ing the expectation value of the dipole acceleration operator ∇V + E(t),

without taking the double time derivative in Eq. (10). Or one may evaluate

first the expectation value of the dipole momentum operator i∇ and sub-

sequently take one time derivative to arrive at the dipole acceleration. In

Ref. [38], it was shown for H+
2 that the third possibility, the velocity form,

gives the best results in the sense that the shape of the resulting HHG

spectra is closest to the spectra from the numerically exact solution of the

TDSE. In the velocity form, one replaces in Eq. (19) the matrix element dr

by the dipole–velocity matrix element

vr(p) = 〈ψPW(p)|i∇|ψ0〉. (20)

After this replacement, Eq. (19) yields not the expectation value of the

dipole moment, but of the dipole velocity.

So far we have not discussed the question of length gauge versus velocity

gauge. Although there is not a unique opinion in the literature about what

gauge is most appropriate, previous work suggests that length gauge is

preferable for atoms and small molecules [39, 40]. This seems to happen

because in the length gauge the field–dressed ground state is similar to the

field–free state used in the SFA. However, this statement does not hold

for molecules at very large internuclear separations R, as was shown in

Ref. [37]. In this case the length gauge leads to an unphysical increase of

the cutoff frequency and the harmonic intensities as a function of R. Using

velocity gauge in combination with a saddle–point approximation adapted

to the presence of two centers leads instead to physically reasonable results.

In velocity gauge, Eq. (11) is replaced by

D(t) = −i

t
∫

0

dt′
∫

d3p d∗

r (p) vi(p, t
′) exp (−iS(p, t′, t)) + c.c. (21)

with the velocity–gauge ionization matrix element

vi(p, t) = 〈ψPW(p)| − i∇ ·A(t) + A2(t)/2|ψ0〉. (22)

The difference with respect to the length gauge is twofold: (i) the operator

in the matrix element (22) is the one from the velocity–gauge Hamiltonian

(2), and (ii) the momenta at which the ionization and recombination matrix

elements in Eq. (21) are evaluated are the canonical “drift” momenta p

instead of the instantaneous momenta p + A(t). It is important not to

confuse the velocity gauge of the Hamiltonian with the velocity form of the
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recombination matrix element, Eq. (20). Both can be, but need not be,

used in combination with each other.

The internuclear distances at which the unphysical behavior of the

length gauge becomes relevant are of the order of πα where α is the classi-

cal oscillation amplitude of the electron in the laser field. These distances

are much larger than typical equilibrium bondlengths. In the following we

will concentrate on the case of small molecules and restrict ourselves to the

length–gauge formulation.

2.4 Odd and even harmonics

For a monochromatic field or sufficiently long pulses, it follows from the

photon picture that the harmonic frequencies are integer multiples of the

laser frequency. In a typical experiment, one observes only the odd har-

monics. This is the consequence of the inversion symmetry of the target

gas. In simple terms, all half optical cycles of the driving laser field generate

harmonics with the same intensities but with phase differences of π relative

to each other. The field of the XUV radiation obeys the symmetry

EXUV(t+ T/2) = −EXUV(t), (23)

where T is the duration of the laser optical cycle. The Fourier spectrum

of such a signal has only odd frequency components, i.e., the peaks are

separated by twice the laser photon frequency. Equation (23) is a special

case of a dynamical symmetry in HHG. Reference [41] discusses the relation

between dynamical symmetries and selection rules in HHG.

The existence of inversion symmetry is obvious for atoms which are

spherically symmetric. It is also obvious for homonuclear diatomic

molecules. In general, however, a molecule with fixed nuclear positions does

not possess inversion symmetry. Nonetheless, in an experiment with ran-

domly oriented molecules, one can consider the whole ensemble of molecules

as being again inversion symmetric. The same statement remains true in

experiments with laser–aligned molecules because alignment does not fix

the orientation of the molecular axes. (Orientation refers to knowing also

which atom is on which side.) Therefore, in practice one usually observes

only odd harmonics when using long laser pulses.

Even harmonics could be measured with oriented heteronuclear

molecules. A particularly interesting case of symmetry breaking occurs

in an oriented HD molecule. For fixed nuclei, the electron dynamics is

completely inversion symmetric. By including the coupling to the vibra-
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Fig. 3 (a) Harmonic spectrum generated from the 1D HD molecule driven by a laser
field with peak intensity 1014 W/cm2 and wavelength 770 nm. The plotted quantity is
proportional to the number of emitted photons per frequency interval. (b) The same
calculation for the 1D H2 molecule. From [42], copyright 2001 by the American Physical
Society.

tional degree of freedom, however, the molecule becomes asymmetric, giving

rise to substantial even–harmonic generation [42]. This is an example of

non-Born–Oppenheimer strong–field dynamics. Figure 3 compares HHG in

one-dimensional H2 and oriented one-dimensional HD. The spectra result

from the numerical solution of the TDSE with three degrees of freedom:

two electron coordinates and the internuclear distance. The spectra clearly

show the absence of even harmonics in H2 and their presence in oriented

HD.
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3 Influence of molecular structure on HHG

Equation (19) gives insight into the influence of molecular structure on

HHG. The ground–state molecular orbital appears in the ionization and

recombination matrix elements, di (or vi) and dr (or vr). We will see that

the effect of the two dependences is quite different: the ionization part in-

fluences mainly the overall efficiency of HHG and its dependence on the

orientation of the molecular axis, while the recombination part addition-

ally determines directly the shape of the HHG spectrum. Therefore, the

recombination step may be considered the more important subject of in-

vestigation in molecular HHG. We will consider both points separately.

3.1 Ionization step

If ionization by an intense laser field takes place via tunneling, one may

suspect that the electron loses to a certain extent its memory about its

initial wave function on its way out of the molecule. Furthermore, one may

think that the ionization probability is dictated mainly by the ionization

potential of the system. However, one finds that the ionization yields can

depend strongly on the molecular species and orientation. It is known from

a series of experiments and theoretical works that strong–field ionization

is suppressed in a number of molecules, when compared to ionization of

a “companion” atom with similar ionization potential [43–55]. Since the

literature does not seem to fully agree about the mechanisms responsible

for these deviations, we will not further discuss ionization suppression in

detail. We note, however, that the ionization step crucially influences the

overall efficiency of HHG. We are predominantly interested in the momen-

tum distributions of electron wave packets after ionization, since they will

influence the shape of the HHG spectra. Often, this distribution is found

to be rather insensitive to the molecular structure, e.g. in the compari-

son of aligned N2 molecules at different angles [56]. On the other hand,

there is an important exception in the case of molecular orbitals with mir-

ror antisymmetry. If the electric field of the laser pulse points parallel to a

nodal plane, then the antisymmetry is conserved, and there are no electrons

moving strictly parallel to the field. Rather, the electron always exhibits a

lateral drift motion, which makes the usual three–step model inapplicable

(since it assumes zero initial velocity). The lateral drift strongly suppresses

recollisions, and the efficiency of HHG is reduced. In this exceptional case

the use of elliptical polarization can enhance HHG by compensating the



September 21, 2007 14:35 World Scientific Book - 9in x 6in Signatures2

16

drift. We illustrate this behavior [57] using the example of the first excited

state of the H+
2 molecular ion, which possesses a nodal plane perpendicular

to the molecular axis. Instead of the three-dimensional system, we consider

a 2D model system with the binding potential

V (x, y) = −
∑

k=1,2

1
√

(x− xk)2 + (y − yk)2 + 0.5
. (24)

The soft–core potential with the softening parameter 0.5 avoids the nu-

merical difficulties of a Coulomb singularity. It is also physically more

applicable than a bare 1/r Coulomb potential in 2D, because it mimics

the fact that in 3D, the electron has more available “space” to bypass the

nucleus. The soft–core potential can be viewed as an average of the 3D

potential over the third dimension [58]. The TDSE for one electron in the

potential (24) plus the interaction with a 780 nm laser pulse with intensity

4×1014 W/cm2 is solved numerically by means of the split–operator method

[59]. We consider the special case that the molecule is aligned perpendic-

ular to the major axis of the elliptical laser polarization since this means

that the electric field points along the nodal plane in the limit of linear

polarization. The intensities of the harmonic orders 31, 41, 51, and 61 are

shown in Fig. 4 as a function of laser ellipticity. The maximum at non-zero

ellipticity is a clear signature of the orbital antisymmetry. It is apparent

that the saddle–point version of the strong–field approximation, Eq. (19)

cannot explain the non-zero harmonic intensity for linear polarization, since

the saddle–point momentum is parallel to the polarization axis and there-

fore the ionization and recombination matrix elements vanish due to the

orbital antisymmetry. This can be interpreted such that the lowest–order

saddle point approximation is not sufficient to replace the integration over

momenta in the SFA expression.

Nodal planes induce a strong dependence of the efficiency of HHG on

the alignment of the molecule. We note that the antisymmetry leads also

to strong suppression of the total ionization probability when the electric

field points along a nodal plane so that the orientation dependence of the

ionization probability gives a qualitative image of the initial electron orbital

[60].

In the example above there are two physical ingredients, namely a nodal

plane and the use of ellipticity, that are both detrimental to the HHG effi-

ciency if they are taken by themselves. In the combination of both, however,

they can compensate each other. In the same spirit, it has recently been

proposed to compensate the lateral drift from the nodal plane by a non-

dipole effect [61, 62]. It is well known that the effect of the magnetic field
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Fig. 4 Ellipticity dependence of the harmonic intensities for the antisymmetric 1st
excited state of 2D H+

2
, oriented perpendicular to the laser field. Laser pulses with

780 nm wavelength and intensity 4×1014 W/cm2 are used. (a) 31st, (b) 41st, (c) 51st,
(d) 61st harmonic. Data from [57].

of a laser pulse is to push the freed electron into the laser propagation direc-

tion and thereby to reduce the recollision probability [63, 64]. For suitable

alignment of the molecule, the magnetically induced drift partially counter-

acts the drift due to the orbital structure. To be precise, the compensation

is effective when the laser propagation axis is perpendicular to the nodal

plane.

3.2 Recombination step

In the framework of the SFA, the recombination step affects HHG through

the recombination matrix element. The essential difference with respect

to the ionization step, however, is that the returning electron momenta are

significantly higher than the initial momenta. The de Broglie wavelength of

the electron can be comparable to the internuclear distance. Consequently,

one may expect interference effects in HHG from a diatomic molecule, in

analogy to Young’s double slit interference. We demonstrate this behavior

by investigating once more the 2D model of H+
2 that we introduced in the

previous section. The initial state is now taken to be the symmetric ground

state. The resulting spectra for 2D H+
2 aligned at various different angles
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Fig. 5 Spectra of harmonics polarized parallel to the laser polarization direction for
2D H+

2
in 780 nm laser pulses, aligned at various angles as indicated. Left panels: laser

pulses with intensity 5×1014 W/cm2. Panel (d): field–free simulation for recolliding
wave packets with energies corresponding to the 31st harmonic (solid line) and 75th
harmonic (dashed line). Panels (e),(f): laser pulses with intensity 1×1015 W/cm2. From
[15], copyright 2002 by the American Physical Society.

with respect to the polarization axis of a linearly polarized 780 nm laser

pulse are shown in Fig. 5. Two different laser intensities are compared.

Furthermore, panel (d) of the figure shows the result of a laser–field–free

simulation where the initial state is the superposition of the ground state

with an incoming electron wave packet, the momentum of which is chosen

such that it corresponds to the 31st or 75th harmonic, respectively. In

all cases, we observe a clear suppression of harmonic emission around a

harmonic frequency that depends on the orientation angle but is indepen-

dent of the laser parameters. The same observation can be made in the

results of time–dependent Hartree–Fock calculations for the case of a 2D

H2. The binding potential is the same as given by Eq. (24), but with soft-

ening parameter 0.41 instead of 0.5. Additionally, the H2 model assumes a

mean–field potential

Vee(r) =

∫

|Ψ(r′, t)|2d2r′
√

(r − r′)2 + 0.36
(25)
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Fig. 6 Spectra of harmonics polarized parallel to the laser polarization direction for 2D

H2 in 780 nm laser pulses with intensity 5×1014 W/cm2. The alignment angle of the
molecule is as indicated. From [15], copyright 2002 by the American Physical Society.

describing the electron–electron interaction. The results for various orien-

tations of this model molecule are shown in Fig. 6. Similar to H+
2 , the

HHG spectra exhibit a minimum moving to higher harmonic orders with

increasing angle between molecule and laser field.

HHG can be used for attosecond–pulse generation by superposition of

harmonics with different frequencies. The duration and shape of attosecond

pulses depend on the phases of the different harmonics. The harmonic phase

can be calculated simply as the phase of the complex Fourier transformed

acceleration, a(ω). Figure 7 compares the orientation dependences of the

harmonic intensity and of the harmonic phase for the 43rd harmonic in 2D

H+
2 . It is apparent that the minimum in the harmonic yield coincides with a

jump of the phase about π. Except for the jump, the phase is approximately

constant. This suggests that the complex harmonic amplitude a(ω) goes

through zero at a certain angle of orientation.

If the observed minimum is due to destructive double–slit type inter-

ference, we can write the interference conditions in simple form. Assuming

that the contributions from the two centers interfere with a phase difference

determined by the de Broglie wavelength λ of the returning electron and

the projection of the internuclear distance on the laser polarization axis,

R cos θ predicts interference minima at

R cos θ = (2n+ 1)
λ

2
, n = 0, 1, 2, . . . , (26)

while interference maxima are expected for

R cos θ = nλ, n = 1, 2, . . . . (27)

This model has recently been named the two–point emitter model. In

order to corroborate the idea of two–center interference, data from extensive

simulations of H+
2 and H2 was collected [65], and the positions of the minima
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Fig. 7 Orientation dependence of the 43rd harmonic for 2D H+

2
in a 780 nm laser pulse

with intensity 5×1014 W/cm2. (a) Harmonic intensity; (b) harmonic phase. From [65],
copyright 2002 by the American Physical Society.

and maxima found in the spectra and in the orientation dependences were

compared with the simple double–slit formulas. The result is plotted in

Fig. 8. The straight lines show the predictions of the formulas (26),(27).

The minima and maxima found from the numerical TDSE calculations are

plotted as data points. For the conversion of harmonic frequencies ω to the

electron wavelength λ = 2π/k, a heuristically corrected relation is used,

k2

2
= ω, (28)

instead of the usual relation k2/2 + Ip = ω that emerges from the SFA or

simple man’s model. The idea behind this correction is that the interfer-

ence is not determined by the wavelength corresponding to the asymptotic

energy of the electron far away from the core, Easympt = ω− Ip. The inter-

ference is dictated by the wavelength in the core region, where the electron

is faster due to the attractive long–range binding potential. The energy
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Fig. 8 Projection of the internuclear distance on the polarization axis, R cos θ, versus
the de Broglie wavelength of the recolliding electron for which the harmonic yield is

minimal (lower points) or maximal (upper points). The wavelength is calculated as
explained in the text. Straight lines, two–point emitter model given by Eqs. (26),(27).
From [65], copyright 2002 by the American Physical Society.

amount Ip appears to be the natural scale of the correction. We observe

in Fig. 8 that the numerical results agree well with the two–point emit-

ter model when we use equation (28). For a discussion of this “dispersion

relation” in the context of atomic HHG, see Ref. [66].

The 2D calculations for H+
2 were followed by 3D calculations that led

to the same findings: in Ref. [67], a 3D soft–core potential was employed in

TDSE simulations on a numerical grid, while later in Refs. [68, 69] a basis–

set expansion was applied to the TDSE for the bare two–center Coulomb

potential of H+
2 .

In the discussion so far, the two–center interference is a phenomenon

that we expect from the intuitive picture that the recolliding electron finds

two possible sites for recombination. One can derive the two–center inter-

ference from the SFA if one uses (i) the velocity form of the recombination

matrix element and (ii) a linear combination of atomic orbitals (LCAO) for

the initial electronic wave function, i.e.,

Ψ0(r) ∼ ϕ0(r − R/2) + ϕ0(r + R/2). (29)
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One obtains for the matrix element

〈exp(ik · r)|i∇|Ψ0〉 ∼ 2 cos(k ·R/2) 〈exp(ik · r)|i∇|ϕ0〉. (30)

The function cos(k · R/2) expresses explicitly the two–center interference

and is consistent with the two–point emitter model, except for the different

“dispersion relation” in the SFA. References [69, 70] compare dipole and

acceleration forms and show that the two–point emitter formulas follow

from the acceleration form, if large internuclear distance is assumed as an

additional approximation.

If the molecular orbital is an LCAO with opposite signs of the atomic

orbitals, i.e.,

Ψ0(r) ∼ ϕ0(r − R/2)− ϕ0(r + R/2), (31)

one can show immediately that

〈exp(ik · r)|i∇|Ψ0〉 ∼ 2i sin(k · R/2) 〈exp(ik · r)|i∇|ϕ0〉. (32)

This means that the interference minima and maxima are now interchanged

as compared to the case of Eq. (29) [65]. It is important to note that

the form of Eq. (31) does not imply that the orbital is antibonding or

antisymmetric with respect to a mirror or inversion operation. Rather,

the two atomic orbitals that are added with opposite signs in Eq. (31) are

spatially translated relative to each other. This point has sometimes led

to confusion in the literature; for clarification see also Refs. [71, 72]. An

instructive example is the σg valence orbital of the N2 molecule. It is a

symmetric orbital (with respect to both inversion and reflection), but in

a very rough LCAO approximation, it would be the sum of two atomic

p-orbitals, added with opposite signs. Therefore, the expected interference

behavior is different from H2 and H+
2 . The simple LCAO orbital, however,

is not a realistic approximation for the N2 orbital, since atomic s-orbitals

contribute about 30% to the molecular orbital. The two s-orbitals have to

be added with equal signs in order to give a symmetric molecular orbital.

The two types of interference (corresponding to LCAOs with either plus or

minus sign) are thus mixed together in one molecular orbital. As a result,

there is no simple double–slit type interference in N2 [73]. This is confirmed

by experiments on aligned N2 [16, 74].

Next, we consider the carbon dioxide molecule CO2, which has the lin-

ear structure OCO. The doubly degenerate valence orbital has πg symmetry

with two nodal planes, one along the molecular axis, one perpendicular to

it. The orbital can be well approximated by two atomic p-orbitals with
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opposite signs centered at the oxygen atoms. Therefore, two–center inter-

ference is expected for HHG from CO2, and this is confirmed by experiments

on aligned CO2 [17, 75]. Kanai et al. have proved that the minimum ob-

served in the HHG spectrum of CO2 must be due to the recombination

step in the three–step model by measuring simultaneously the harmonic

intensity and the ionization yield. They found that the suppression of the

harmonic intensity coincides with an increased ionization yield, ruling out

the possibility that the suppression is caused by the ionization step.

Itatani et al. [16] proposed that the orbital dependence of HHG can be

exploited to retrieve the orbital from the measured harmonics. This requires

measurements of the HHG spectra for many different orientation angles of

the molecule. One assumes that the HHG spectrum can be expressed as

a product of a prefactor and the modulus squared of the recombination

matrix element d(ω, θ),

S(ω, θ) ∼ ω4|a(ω)d(ω, θ)|2. (33)

By measuring the harmonic spectrum for a reference atom with known

orbital, one can obtain the function |a(ω)|2. Assuming that the ionization

and acceleration steps in the molecule are similar to the atom, one uses the

same prefactor for the molecule so that from the measured molecular HHG

spectra and Eq. (33), one obtains |d(ω, θ)|2. Assuming or measuring the

phase of d, one knows the complex values |d(ω, θ). One can then obtain

the orbital by inverse Fourier transformation. In Ref. [16] the phase was

assumed to behave according to the findings of Refs. [15, 65], namely that

a phase jump by π occurs where the harmonic intensity exhibits a minimum

(see Fig. 7). A direct measurement of the harmonic phase seems possible

[7, 76, 77], but one must then also know the phase of the quantity a(ω)

to obtain the phase of the transition matrix element d. Reference [16]

presents the result of the tomographic procedure for the N2 molecule and

finds good qualitative agreement with an ab initio orbital. Further work

discussing multielectron effects is found in Refs. [78, 79]. Application to

other molecules is work in progress. Complications arise for orbitals with

nodal planes for the reasons explained in the previous section. At present

it seems that for such orbitals, one has to prescribe the nodal planes by

hand in order to make the tomographic reconstruction work.
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4 Dynamical effects

In the preceding sections, we have ignored the nuclear motion in laser–

driven molecules. This is expected to be a good approximation for many

molecules (including for example N2) in ultrashort few–cycle pulses, be-

cause the vibrational and rotational period is long compared to the pulse

duration. The only expected effect is that one should average the results

over the distribution of internuclear distances and orientations. In a typ-

ical experiment, this is the distribution corresponding to the vibrational

ground state and random alignment of the molecular axes. However, one

can also employ a prepulse that creates a rotational or a vibrational wave

packet which would then determine the distribution at the time of arrival of

the strong driving pulse generating the harmonics. Note that the coherent

superposition of the complex harmonic amplitudes for different molecular

orientations/geometries has to be taken, rather than an incoherent summa-

tion of harmonic intensities [80].

The assumption of frozen nuclei does not hold for very light molecule. In

particular, we expect that nuclear motion takes places during the action of

the driving pulse for molecules with bound hydrogen atoms. This includes

of course hydrogen molecules, but also many other important species such

as water or methane. The rotational motion can still be considered frozen

during the laser pulse, but the vibrational period can be comparable to the

pulse duration. We focus here on the possibility that the ionization of the

molecule creates a vibrational wave packet in the molecular ion. If there is

significant wave–packet motion between the ionization and recombination

steps in the HHG process, we expect an influence on the HHG spectra.

Since the vibrational wave packet is launched together with the continuum

electron wave packet, we have a correlated wave–packet motion.

Effects of nuclear motion have been seen in several simulations of HHG,

in which the TDSE for H+
2 was solved numerically [81–84]. The first demon-

stration of the effect of correlated nuclear and electronic wave packets in

HHG, however, was seen in TDSE calculations for two–dimensional H2 and

D2 model molecules [85], incorporating one–dimensional vibrational mo-

tion and two–dimensional electron motion. Figure 9 shows the ratio of the

harmonics in D2 and H2 as well as the ratio T2/H2 for two different laser

wavelengths, namely 780 nm and 1200 nm. The molecules are aligned per-

pendicular to the electric field of the laser pulse, except for the stars in

Fig. 9(a), which refer to randomly aligned molecules. We see clearly that

the heavier isotopes generate harmonics more efficiently. For example, the
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Fig. 9 Ratio of harmonics in different isotopes for 780 nm and 1200 nm laser pulses
as indicated. Full circles, ratio D2/H2; open squares, ratio T2/H2 (molecules aligned
perpendicular to the field). Stars in the left panel, ratio D2/H2 calculated for random
alignment. From [85], copyright 2005 by the American Physical Society.

ratio D2/H2 is almost always greater than one. The ratio tends to increase

as a function of harmonic order. At least for this set of parameters, there

is not a big difference between perpendicular and random alignment. We

can understand the result in terms of the three–step model. In the time

between ionization and recombination, the ionized molecule expands. This

occurs faster in the lighter isotope H2 because of the smaller reduced nu-

clear mass. Recombination must lead back into the initial state, i.e. into

the vibronic ground state with internuclear distances near the equilibrium

distance. The probability of this transition is reduced when the mean in-

ternuclear distance of the wave packet in the molecular ion becomes larger.

The suppression is therefore more pronounced in the lighter isotope. We

can also interpret the increase of the ratio with harmonic order, since ac-

cording to the three–step model, the higher harmonics are generated by

longer electron travel times, see Eq. (9), leaving more time for the nuclear

wave–packet dynamics. The physical process is illustrated in Fig. 10. It

shows the ground–state Born–Oppenheimer (BO) potentials of H2 and H+
2

and the vibrational wave–packet dynamics in the H+
2 potential.

To understand this effect quantitatively, we introduce the strong–field

approximation for molecules including the vibrational dynamics of the

molecular ion after ionization [85–87]. One obtains the time–dependent
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dipole moment

D(t) = −2i

t
∫

0

dt′
(

2π

i(t− t′) + ǫ

)3/2
∞
∫

0

dRχ∗

0(R)d∗

r

(

ps(t
′, t) + A(t)

)

× exp
(

− iS(t′, t)
)

ÛR(t−t′) di

(

ps(t
′, t) + A(t′), t′

)

χ0(R)

+ c.c., (34)

where the saddle–point approximation for the integration over momenta

has already been carried out. This equation corrects typographical errors

in equation (3) of [87]. χ0(R) denotes the vibrational ground state of H2,

and the ionization and recombination matrix elements are

di(p, t) = 〈ψPW(p)ψ+
R |E(t)z|ψR〉rr′ , (35)

dr(p) = 〈ψPW(p)ψ+
R | − r|ψR〉rr′ , (36)

with ψR(r, r′) and ψ+
R(r′) being the electronic BO states in H2 and H+

2 . The

time–evolution operator ÛR(t−t′) propagates the vibrational wave packet

in the BO potential of the molecular ion, according to the one–dimensional

TDSE for the internuclear distance. The prefactor 2 in equation (34) stands

for the two electrons in H2. Exchange terms [88, 78, 79] due to the two–

electron nature of the system are neglected in Eq. (34).
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packet evolution in H+

2
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2
(dashed). The initial wave packet is the vibra-

tional ground state of the neutral molecule.

If one could neglect the dependence of the matrix elements on R, the

only dependences on R in the SFA integral would be in χ0(R) and in the

time–evolution operator. This leads a simple expression for the SFA integral

where only the vibrational autocorrelation function

C(τ) =

∞
∫

0

dRχ∗(R, 0)χ(R, τ) (37)

appears in addition to the SFA expression for atoms [85]. The autocorre-

lation function is the overlap of the evolved vibrational wave packet at the

time of recombination with the initial wave packet at the time of ionization.

If a harmonic is considered to be generated by only one pair of ionization

time t′ and recombination time t, then the harmonic intensity is propor-

tional to the modulus squared of the autocorrelation function, shown in

Fig. 11 as a function of the travel time. The maxima at 18 fs for H+
2 and

25 fs for D+
2 correspond to the vibrational periods of these molecular ions.

The typical electron travel times in HHG with 800 nm light, however, are

below 2 fs since the optical period is only 2.7 fs. The inset shows |C(τ)|2 at

such short times. In this region, the autocorrelation of D+
2 is always greater



September 21, 2007 14:35 World Scientific Book - 9in x 6in Signatures2

28

than the one of H+
2 , because of the faster dynamics in the latter. The ratio

of the two curves is in good but not perfect agreement with the ratio of har-

monics in D2 and H2 as calculated from the TDSE, see Fig. 3 in Ref. [85].

The remaining discrepancies can be due to differences of the initial wave

packet from the vibrational ground state χ0, caused by the R–dependent

ionization probability [89]. Another point is the slightly different ionization

probabilities in H2 and D2, which can modify the harmonic ratios [87].

The experiment of Ref. [18] confirms that D2 produces more intense

harmonics than H2. Also, the experimental ratio increases as a function

of harmonic order. In Refs. [85, 18] it has been demonstrated that the

time evolution of the internuclear distance can be reconstructed from the

measured ratios by employing an iterative genetic algorithm that optimizes

the time evolution such that the ratio of autocorrelation functions matches

the measured ratio of harmonics.

The use of the simple autocorrelation function amounts to ignoring

the two–center interference. The inclusion of the dependence of the ma-

trix elements on the internuclear distance recovers the two–center inter-

ference effect, see the discussion in Refs. [18, 87]. The evaluation of the

strong–field approximation then reveals an additional modulation in the

ratio D2/H2 which is due to the fact that the destructive interference min-

imum is reached at different times in D2 and H2. This follows from the

different speeds of wave–packet motion. Subject of current investigations is

the question whether the time–evolution of the internuclear evolution after

ionization can be directly imaged from the observation of this two–center

interference. It is not directly obvious yet, how to disentangle the interfer-

ence from the effect due to the wave–packet overlap described above.

5 Conclusions

We have given an introduction into the physical phenomena taking place

in high–order harmonic generation with molecules. We have focused on

three points: (i) the influence of molecular orbital structure on the ioniza-

tion characteristics, (ii) the influence of the orbital on recombination (with

two–center interference being the simplified perspective on this dependence

in diatomic molecules), and (iii) the effects of vibrational motion on HHG.

Molecular HHG is currently intensively studied by several experimental and

theoretical groups, since it promises new approaches to molecular imaging,

see also the review article Ref. [90]. Furthermore, molecules offer the pos-
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sibility to manipulate the harmonic phase in a more flexible way than in

atomic HHG. This may open new possibilities for attosecond–pulse shaping

and for quasi phase matching.
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Muller, H. G., and Agostini, P. (2001). Science 292, 1689.
[7] Mairesse, Y., et al. (2003). Science 302, 1540.
[8] Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K., and

Tsakiris, G. D. (2003). Nature 426, 267.
[9] Drescher, M., Hentschel, M., Kienberger, R., Tempea, G., Spielmann, C.,

Reider, G. A., Corkum, P. B., and Krausz, F. (2001). Science 291 1923.
[10] Hentschel, M., et al. (2001). Nature 414, 509.
[11] Agostini, P., and DiMauro, L. F. (2004). Rep. Prog. Phys. 67, 813.
[12] Scrinzi, A., Ivanov, M. Y., Kienberger, R., and Villeneuve, D. M. (2006).

J. Phys. B 39, R1.
[13] Sansone, G., et al. (2006). Science 314, 443.
[14] Zewail, A. H. (2000). J. Phys. Chem. A 104, 5660.
[15] Lein, M., Hay, N., Velotta, R., Marangos, J. P., and Knight, P. L. (2002).

Phys. Rev. Lett. 88, 183903.
[16] Itatani, J., et al. (2004). Nature 432, 867.
[17] Kanai, T., Minemoto, S., and Sakai, H. (2005). Nature 435, 470.
[18] Baker, S., et al. (2006). Science 312, 424.
[19] Velotta, R., Hay, N., Mason, M. B., Castillejo, M., and Marangos, J. P.

(2001). Phys. Rev. Lett. 87, 183901.



September 21, 2007 14:35 World Scientific Book - 9in x 6in Signatures2

30

[20] Itatani, J., Zeidler, D., Levesque, J., Spanner, M., Villeneuve, D. M., and
Corkum, P. B. (2005). Phys. Rev. Lett. 94, 123902.

[21] Niikura, H., et al. (2002). Nature 417, 917.
[22] Niikura, H., et al. (2003). Nature 421, 826.
[23] Bloch, F., and Nordsieck, A. (1937). Phys. Rev. 52, 54.
[24] Pauli, W., and Fierz, M. (1938). Nuovo Cimento 15, 167.
[25] Kramers, H. A. (1956). Collected Scientific Papers (North Holland, Ams-

terdam).
[26] Henneberger, W. C. (1968). Phys. Rev. Lett. 21, 838.
[27] Faisal, F. H. M. (1973). J. Phys. B 6, L89.
[28] Sundaram, B., and Milonni, P. W. (1990). Phys. Rev. A 41, 6571.
[29] Eberly, J. H., and Fedorov, M. V. (1992). Phys. Rev. A 45, 4706.
[30] Burnett, K., Reed, V. C., Cooper, J. and Knight, P. L. (1992). Phys. Rev.

A 45, 3347.
[31] Lappas, D. G., Fedorov, M. V., and Eberly, J. H. (1993). Phys. Rev. A 47,

1327.
[32] Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A., and Corkum,

P. B. (1994). Phys. Rev. A 49, 2117.
[33] Salières, P., L’Huillier, A., and Lewenstein, M. (1995). Phys. Rev. Lett. 74,

3776.
[34] Antoine, P., L’Huillier, A., and Lewenstein, M. (1996). Phys. Rev. Lett. 77,

1234.
[35] Balcou, P., Salières, P., L’Huillier, A., and Lewenstein, M. (1997). Phys.

Rev. A 55, 3204.
[36] Wolkow, D. M. (1935). Z. Physik 94, 250.
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