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Tunneling criteria and a nonadiabatic term for strong-field ionization
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We investigate tunneling ionization of a model helium atom in a strong circularly polarized short laser pulse
using the classical backpropagation method and compare ten different tunneling criteria on the same footing,
aiming for a consistent classical picture of the tunneling dynamics. These tunneling criteria are categorized
into velocity-based, position-based, and energy-based criteria according to different notions of a tunnel exit.
We find that velocity-based criteria give consistent tunneling exit characteristics with nonadiabatic effects fully
included. Other criteria are either inconsistent or only able to include nonadiabatic effects partially. Furthermore,
we construct a simple tunneling rate formula, identify a term in the rate responsible for the nonadiabatic effects,
and demonstrate the importance of this term.
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I. INTRODUCTION

Tunneling ionization is fundamental to many strong-field
phenomena as a common first step. A detailed description
of its features is essential to understand and control related
phenomena such as high-order harmonic generation [1–3] and
many others. However, some basic properties of this process
are still being debated, such as the position where the electron
leaves the barrier and the time it takes for the electron to
tunnel [4–6]. Advances in laser technology made it possible
to assess these questions experimentally, for example, using
the so-called attoclock technique. There, a strong elliptically
polarized laser pulse ionizes a bound electron and subsequently
deflects it to different directions depending on the time the
electron is released, thereby mapping tunneling exit time to
deflection angle [7,8]. This angle, however, can be modified by
the interaction of the residual ion with the outgoing electron.
Removing this Coulomb correction from the offset angle is
unfortunately a nontrivial task, where theoretical support is
always necessary and much of the discussion on the attoclock
is rooted in the question of how exactly this has to be done.

In static or adiabatic tunneling in one spatial dimension,
the commonly accepted classical picture of a barrier exit is
when the total energy equals the potential energy, or when
the kinetic energy is zero, which we call the zero-kinetic-
energy principle hereafter. Since the total energy is conserved,
the tunnel exit can be determined unambiguously. In reality,
tunneling ionization occurs in a time-dependent field, where
constant tunneling energy during under-barrier motion cannot
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be assumed [9–11]. This assumption, nevertheless, has been
commonly made to obtain the Coulomb correction [12] with
classical-trajectory-based methods [13–15] starting from cer-
tain predefined tunneling exit positions given by the static (or
Stark-shifted) ionization potential. In addition, instantaneous
tunneling is also assumed to launch the trajectory, which con-
tradicts any tunneling time delay found in the end. Moreover,
in more than one spatial dimension ambiguities arise in the
choice of the tunneling coordinate.

Classical backpropagation [16,17] avoids these problems by
treating the ionization step fully quantum mechanically. The
ionized wave packet is transformed into classical trajectories
via the local-momentum method [18–20] and propagated
backwards in time to retrieve the tunneling exit information.
By choosing different criteria to stop these backpropagating
trajectories, we compared different assumptions and approx-
imations to the tunneling dynamics on the same footing and
found [17] that the discrepancies in the literature regarding
tunneling time delay [12,16,21–27] depend on the degree to
which nonadiabaticity is taken into account and plays a role.

As commonly used, the position criterion considers an
electron to tunnel out at a certain position given by the static
ionization potential and thus neglects any change in exit
position due to nonadiabatic energy variation across the barrier.
It results in a positive tunneling time delay and nonvanishing
longitudinal tunneling velocity [24,25]. In contrast, the veloc-
ity criterion, which is a straightforward extrapolation of the
zero-kinetic-energy principle to higher dimensions, considers
an electron to tunnel out with vanishing longitudinal velocity
(vanishing velocity in the instantaneous field direction). It fully
accounts for nonadiabaticity and results in zero tunneling time
delay [16,17]. In this article, we study eight more tunneling
criteria that are physically intuitive. These criteria can be
categorized into velocity-based criteria (e.g., the velocity
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criterion), position-based criteria (e.g., the position criterion),
and energy-based criteria.

Formally, all tunneling criteria are equivalently suitable
as a classical picture of the quantum tunneling process, as
long as the ionizing wave packet is composed of trajectories
that actually start at some point according to the criterion
in question. In other words, some of these criteria may not
be suitable due to their failure to account for the observed
tunneling probability because some backpropagated trajec-
tories might never fulfill the respective tunneling criterion.
This can be quantified using the nontunneled fraction [16,17].
Here, we show that the velocity-based criteria are suitable
candidates in the sense above for the classical picture of the
quantum tunneling dynamics. These criteria are consistent
generalizations to the principle of zero kinetic energy, which
defines the tunneling barrier, while other criteria are not (in the
case of nonadiabatic tunneling ionization).

Furthermore, a study using the adiabatic expansion [28–31]
of strong-field approximation (SFA) reveals that nonadiabatic-
ity can be accounted for accurately with a simple tunneling for-
mula similar to the Ammosov-Delone-Krainov (ADK) theory
[32–34] but with a different denominator in the exponent. We
stress the importance of this term and demonstrate its effects
on the tunneling exit characteristics.

The article is organized as follows. In Sec. II we briefly
describe the classical backpropagation method and different
tunneling criteria. In Sec. III we compare the tunneling exit
characteristics given by different tunneling criteria. In Sec. IV
we study the tunneling exit characteristics given by SFA and
identify the nonadiabatic term for tunneling ionization. In
Sec. V we study the suitability of different criteria using the
nontunneled fraction. Conclusions are given in Sec. VI. Atomic
units are used throughout unless stated otherwise.

II. CLASSICAL BACKPROPAGATION
AND TUNNELING CRITERIA

The essence of the classical backpropagation method is a
quantum forward propagation followed by a classical back-
propagation.

A. Quantum forward propagation

The quantum forward propagation treats the tunneling
dynamics fully quantum-mechanically. As before [16,17], the
forward propagation is done by solving the time-dependent
Schrödinger equation (TDSE) using the split-step Fourier
method for a two-dimensional model helium atom with a single
active electron. The potential is adopted from Ref. [35] but with
the radius r replaced by a soft core

√
r2 + a, where a is tuned to

obtain the ionization potential Ip = 0.904 of helium. The laser
field F(t) = − d

dt
A(t) is derived from the vector potential

A(t) = A0√
2

cos4

(
ωt

4

)(
cos(ωt)
sin(ωt)

)
, (1)

representing a two-cycle circularly polarized laser pulse cen-
tered at t = 0 with ω = 0.045 corresponding to 1000-nm
wavelength. The peak intensity is varied from 2.0×1014 to
8.0×1014 W/cm2.

B. Classical backpropagation

The resulting quantum ionized wave packet ψ(r,t ′) is
transformed into classical trajectories at each grid point r . The
momentum of the classical trajectory at r is obtained by the
local-momentum method [18–20],

k(r,t ′) = ∇S(r,t ′), (2)

where S(r,t ′) ≡ arg{ψ(r,t ′)}, and the weight of the classical
trajectory is |ψ(r,t ′)|2. The classical trajectories are then
backpropagated until reaching the tunneling barrier, which is
defined by the tunneling criteria below.

C. Tunneling criteria

For each trajectory, the backpropagation is stopped when
the tunneling criterion is met. The criteria themselves are
based on physical intuition and different classical perspectives
of the tunneling process. All criteria considered here are
time dependent. They can be categorized into three groups:
velocity-based, position-based, and energy-based criteria. In
case multiple solutions to a tunneling criterion exist, we take
the one closest to the core as the true tunnel exit [16,17], while
for position-based criteria, the solution with lowest speed is
taken.

1. Velocity criterion

Let us start from the one-dimensional tunneling scenario.
Here, the tunnel exit sits where the kinetic energy or the
velocity is zero. In a rotating laser field, it is intuitive to set the
velocity in the instantaneous field direction F̂ to zero, i.e., in
the direction tunneling optimally occurs. The velocity criterion
thus reads

k‖ ≡ −k · F̂ = 0. (3a)

In fact, this criterion can be derived from the seminal Keldysh
theory [36,37], according to which for a long circularly
polarized laser pulse the velocity component in the direction
of the laser field must vanish at the tunnel exit, i.e., the time
that corresponds to the real part of the complex ionization time
[28–31]. For arbitrary field shapes this statement is still true
in the tunneling limit, i.e., when expanding the saddle-point
equation up to second order in the Keldysh parameter.

2. Parabolic velocity criterion

The static tunneling ionization process is a separable prob-
lem in parabolic coordinates [38] defined by the (instanta-
neous) electric field in which tunneling is only possible through
the η coordinate, where η = r − F̂ · r . Following along the
lines of the velocity criterion, one may postulate a vanishing
velocity in the η coordinate:

kη ≡ d

dt
(r − F̂ · r) = 0. (3b)

3. Turning point criterion

The tunnel exit in the one-dimensional case corresponds to
the classical turning point of the incident particle and can be
intuitively extended to higher-dimensional systems, where the
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turning point criterion reads

kr ≡ k · r̂ = 0. (3c)

The turning point criterion gives a tunneling exit position as
close as possible to the core during the backpropagation of a
trajectory. It is related to the above criteria in the sense that
the (parabolic) velocity criterion becomes the turning point
criterion assuming −F ‖ r , which is roughly met.

4. Minimal speed criterion

The zero-kinetic-energy principle also indicates a local
minimum in the speed of the particle,

k̇ ≡ d

dt
|k| = 0, (k̈ > 0), (3d)

which is another possible generalization of the one-
dimensional tunneling picture to higher dimensions. We note
that d

dt
|k| �= | d

dt
k|.

The velocity, parabolic velocity, turning point, and minimal
speed criteria all hinge on the velocity and we group them as
velocity-based criteria. None of them assume static tunneling
energy and thus they account fully for nonadiabatic effects.
These criteria are consistent generalizations to the zero-kinetic-
energy principle, even in the case of nonadiabatic tunneling
ionization.

5. Position criterion

In the static tunneling scenario, zero kinetic energy occurs at
the position where the static total energy matches the potential
energy. During tunneling ionization in a varying laser field, the
total energy is generally not conserved. Nevertheless, constant
tunneling energy is commonly assumed, and the position
criterion here considers an electron to tunnel out at certain
positions given by the static ionization potential Ip. It has
been widely used to launch (forward-propagating) classical
trajectories to find the Coulomb correction in the attoclock
setup. There are also different definitions of the position where
an electron should tunnel out, but here we restrict ourselves to
the tunneling exit position given in parabolic coordinates [38],
as other definitions give qualitatively similar results regarding
tunneling time delay and other tunneling exit characteristics
[17]. The position criterion can be written as [39]

r =
Ip +

√
I 2
p − 4βF

2F
, (3e)

where β = 1 − √
2Ip/2 for the three-dimensional case [38].

For a two-dimensional system, the separation constant β is
in principle different. Following the recipe in Ref. [38], we
find β2D = 1 − √

2Ip/4 for the two-dimensional ground state.
However, the resulting tunneling exit coordinates do not have
any qualitative difference compared to those obtained using
the three-dimensional separation constant. Thus, we stick to
the commonly used three-dimensional separation constant in
this study. The reader is referred to the Appendix for a study
of different variants of the position criterion.

6. Stark position criterion

The Stark position criterion considers an electron to tunnel
out at certain positions given by the Stark-shifted ionization
potential I Stark

p ,

r =
I Stark
p +

√(
I Stark
p

)2 − 4βStarkF

2F
, (3f)

where βStark = 1 −
√

2I Stark
p /2, I Stark

p = Ip + 1
2αF 2, and α =

1.57 is the polarizability of the two-dimensional model helium
atom, which is obtained numerically by observing the energy
change due to a range of small external static electric fields.
This criterion, based on the “TIPIS” model [21], accounts for
the position variations due to Stark shift of the initial state but
not for nonadiabatic energy changes under the barrier.

7. Dynamic position criterion

The dynamic position criterion considers an electron to
tunnel out at certain positions given by its instantaneous
binding energy −E,

r = −E +
√

E2 − 4β instF

2F
, (3g)

where β inst = 1 − √−2E/2. Although the (Stark) position
criterion assumes constant tunneling energy through the barrier
to obtain the tunneling exit position, the energy we find at the
exit position is indeed different than assumed [17], which will
become clear later. The dynamic position criterion resolves
this inconsistency by determining the tunneling exit position
on the fly based on the instantaneous energy of the electron.

The position, Stark position, and dynamic position criteria
are based on the position of the electron and we categorize them
as position-based criteria. Both velocity-based and position-
based criteria root from the zero-kinetic-energy principle,
but position-based criteria additionally assume static total
energy for under-barrier motion, which leads to difficulties
and inconsistencies, as we will show later.

8. Static energy criterion

The static energy criterion considers an electron to tunnel
through the barrier with constant ground-state energy

E = −Ip. (3h)

It neglects any energy variation of the initial state and during
the under-barrier motion. In contrast to the position criterion,
which determines the tunneling exit position from the constant
total energy, the static energy criterion assesses the total energy
directly.

9. Stark energy criterion

The Stark energy criterion considers an electron to tunnel
through the barrier with constant Stark-shifted ground-state
energy

E = −I Stark
p . (3i)

This criterion takes into account the Stark shift of the initial
state but neglects nonadiabatic energy variation across the
barrier.
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The static energy and Stark energy criteria are based on
the total energy and thus we group them as (total-)energy-
based criteria. It should be noted that energy-based criteria
are questionable as tunneling criteria to begin with. In a
static tunneling process, the total energy is conserved, hence
these energy-based criteria would be fulfilled everywhere on
a backpropagating trajectory and cannot give any meaningful
tunneling exit information. On the other hand, in tunneling
ionization where energy variation is present, these criteria are
fulfilled almost nowhere for most backpropagating trajectories,
as we will show later.

D. Nontunneled fraction

To quantify the suitability of different criteria as a classical
picture of the tunneling dynamics, we collect the fraction of
trajectories that never meet the tunneling criterion during the
course of backpropagation [16,17],

χ = Pion − Ptun

Pion
, (4)

where Pion is the ionization probability at the end of the
quantum forward propagation and Ptun is the fraction of
trajectories that meets the respective tunneling criterion. For
the nontunneled fraction of ionization probability, no matter
what combination of initial tunneling exit conditions is used,
the accurate asymptotics cannot be reproduced. The nontun-
neled fraction χ denotes to what degree the ionization can be
considered as tunneling according to each tunneling criterion.
It should be sufficiently low in the tunneling regime, and thus
can be used as a quantification of the suitability of different
tunneling criteria.

III. TUNNELING EXIT CHARACTERISTICS
FROM DIFFERENT TUNNELING CRITERIA

In this section, we study the tunneling exit characteristics
given by different stopping criteria using classical backprop-
agation, which gives highly correlated information regarding
the tunneling exit. In the most differential setting, it gives a
correlated distribution of tunneling exit position (x and y),
tunneling exit time τ , longitudinal tunneling momentum k‖,
and transverse tunneling momentum k⊥. The tunneling energy
E (total energy at the tunnel exit) can also be obtained from this
correlated distribution. The results are summarized in Fig. 1
for a peak intensity of 8×1014 W/cm2, projected onto different
exit coordinates.

A. Velocity criterion

Figure 1(a) shows the tunneling exit characteristics obtained
using the velocity criterion. As shown before [16,17], the
velocity criterion fully incorporates nonadiabatic tunneling
effects. This is achieved by introducing a broad distribution
of tunneling exit points as shown in Fig. 1(a1), in contrast to
introducing a nonzero longitudinal tunneling momentum for a
fixed tunneling exit point [24,25,40–44]. The latter, however,
leads to inconsistencies and difficulties, as we will show later
in Secs. III E–III G.

With the velocity criterion, a zero tunneling time delay
results, as is clear from Fig. 1(a2). There, the distribution of

tunneling exit time τ is close to a Gaussian distribution centered
nearly at zero.

The longitudinal tunneling momentum k‖ (velocity in the
instantaneous field direction), by definition of the velocity
tunneling criterion, is zero, as shown in Fig. 1(a3). In contrast,
there is a nonzero shift in the transverse tunneling momentum
k⊥ (velocity perpendicular to the instantaneous field direction)
with Gaussian spreading [Fig. 1(a4)], in agreement with the
Perelomov-Popov-Terent’ev (PPT) theory [45–50], as shown
before [17].

Figure 1(a5) shows the energy distribution at the tunnel
exit. Obviously, an electron may gain or lose energy during its
motion towards the exit. For those electrons that lose energy,
they end up with a large tunneling exit distance to the core and
form the far-out part of the tunneling exit point distribution
in Fig. 1(a1), while for those electrons that gain energy, they
tunnel out at a closer distance to the parent ion.

It is also instructive to study the dependence of the tunneling
energy on exit time, as shown in Fig. 2. Integration of
such distribution over the energy axis gives Fig. 1(a2), and
integration of it over the time axis gives Fig. 1(a5). It can be
seen that the energy absorption is preferred to energy loss at all
times during the laser pulse. At the leading and trailing edges of
the laser pulse, when the laser intensity is comparatively low,
tunneling electrons absorb more energy than near the peak
intensity. This is because the tunneling barrier is thicker at
both edges and the electron has more chance to absorb energy
from the laser field. The nonadiabatic energy gain can also be
interpreted as a virtual absorption of photons, or polarization of
the initial state, followed by a static tunneling ionization [51],
where it is shown that more photons are virtually absorbed as
the laser intensity decreases.

B. Parabolic velocity criterion

The instantaneous laser electric field direction defines both
a Cartesian and a parabolic coordinate. Instead of using zero
velocity in the Cartesian tunneling coordinate, as it is the case
for the velocity criterion (3a), we can also apply a vanishing
velocity in the parabolic tunneling coordinate, leading to the
parabolic velocity criterion (3b). The corresponding tunneling
exit information is shown in Fig. 1(b), which is very similar
to (indeed almost the same as) Fig. 1(a). For a pure tunneling
process, the kinetic energy at the tunnel exit is very small. It
is thus natural that the velocity and parabolic velocity criteria
give similar results, although they require zero kinetic energy
in different coordinates. Their similarity can be seen from
a typical backpropagating trajectory in Fig. 3, where it is
clear that the points identified by both criteria are very close
to each other. In addition, the parabolic velocity criterion
gives a nonzero longitudinal tunneling momentum as shown in
Fig. 1(b3), which is a very narrow peak located at zero, which
is also an indication of the similarity of tunneling exit results
given by both criteria.

C. Turning point criterion

The turning point criterion (3c) considers an electron to
tunnel out at the classical turning point. In the tunneling regime,
the exit point r follows closely the field direction F̂ [16]. The
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FIG. 1. Tunneling exit characteristics of the model helium atom obtained by different tunneling criteria in a laser field with peak intensity
8×1014 W/cm2. Other laser parameters are given in the text. By row: (a) velocity criterion (3a); (b) parabolic velocity criterion (3b); (c)
turning point criterion (3c); (d) minimal speed criterion (3d); (e) position criterion (3e); (f) Stark position criterion (3f); (g) dynamic position
criterion (3g); (h) static energy criterion (3h); (i) Stark energy criterion (3i). By column: (1) distribution of tunneling exit position in x-y
plane (in logarithmic scale); (2) distribution of tunneling exit time τ , where orange dash-dotted lines denote the expected time (not shown
for energy-based criteria); (3) distribution of longitudinal tunneling momentum k‖; (4) distribution of transverse tunneling momentum k⊥; (5)
distribution of tunneling energy E, where black dashed lines denote the ground-state energy −Ip .
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FIG. 2. Correlated distribution of tunneling energy E and tun-
neling exit time τ (in logarithmic scale) of the model helium atom
obtained by the velocity tunneling criterion. The blue solid line
denotes the expected tunneling energy at different tunneling exit
times, and the black dashed line denotes the ground-state energy −Ip .
Laser parameters are the same as in Fig. 1.

turning point criterion (3c) thus is expected to give tunneling
exit coordinates very close to that of the velocity (3a) and
parabolic velocity criteria (3b). This is indeed what we find
comparing Fig. 1(c) to Figs. 1(a) and 1(b) and also from Fig. 3.

D. Minimal speed criterion

The minimal speed criterion keeps track of the speed of the
electron during backpropagation and considers it to tunnel out
at a local minimum of its speed (3d), which gives a tunnel exit

FIG. 3. The central part of a typical backpropagating trajectory
from the ionized wave packet of the model helium atom. The blue
filled circle denotes the exit point in the velocity criterion, the orange
triangle denotes the exit point in the parabolic velocity criterion, the
green square denotes the exit point in the turning point criterion,
and the red diamond denotes the exit point in the minimal speed
criterion. A zoom-in near the exit points is provided in the inset.
Laser parameters are the same as in Fig. 1.

TABLE I. Similarity among velocity-based criteria. Laser param-
eters are the same as in Fig. 1.

Tunneling criterion 〈k‖〉 〈kη〉 〈kr〉 〈k̇〉
Velocity 0 −0.0475 −0.0222 0.0016
Parabolic velocity 0.0240 0 0.0018 0.0088
Turning point 0.0219 −0.0034 0 0.0070
Minimal speed −0.0063 −0.0619 −0.0285 0

Position 0.5620 0.9881 0.5332 0.0845

close to that of (parabolic) velocity and turning point criteria,
as can be seen in Fig. 3. Similarly, tunneling exit characteristics
in Fig. 1(d) are close to those of other velocity-based criteria
[Figs. 1(a)–1(c)].

The similarity of the tunneling exit characteristics given by
the velocity-based criteria (velocity, parabolic velocity, turning
point, and minimal speed criteria) is rooted in the fact that they
all stem from the zero-kinetic-energy principle, generalized
to higher dimensions in different ways. The similarity can be
quantified by studying their respective expected characteristic
variables (the per-criterion vanishing variable) under different
criteria, as shown in Table I. Apparently, all values from
velocity-based criteria are very close to zero, indicating close
resemblance among them. For comparison, we also include the
values under the position criterion, which obviously deviate
from zero.

E. Position criterion

The position criterion (3e) considers an electron to tunnel
out at the position given by the static ground-state ionization
potential, which thus is a thin line around the core as shown in
Fig. 1(e1). Due to the quantum spreading of the ionizing wave
packet, the position criterion specifies the tunneling distance
but not the tunneling angle. Correspondingly, the distribution
of the tunneling exit position is not strictly a line but has a
width. The width of the distribution is minimal near the pulse
center, indicating a more adiabatic scenario, or a more close
concentration of the tunneling exit position near the direction
of the laser field vector.

With this position criterion, a shift of the tunneling exit
time to the positive direction, or a positive tunneling time
delay [24,25], is observed, as shown in Fig. 1(e2). This can be
understood as follows. Taking the tunneling exit position given
by the velocity criterion [Fig. 1(a1)] as the reference that leads
to zero tunneling time delay and noting that it has an average
distance to the core smaller than that of the position criterion
[Fig. 1(e1)] due to nonadiabatic energy absorption, the time the
electron takes to propagate from the reference position to the
position specified in the position criterion would show up in the
tunneling exit time here, resulting in a positive tunneling time
delay. Along the same line, a positive longitudinal tunneling
momentum is found, as shown in Fig. 1(e3), since the electron
is accelerated outwards from the reference position, which has
zero longitudinal tunneling momentum.

The transverse tunneling momentum [Fig. 1(e4)], however,
has some unexpected features. It is essentially a Gaussian
distribution but with a sharp cutoff at one side. Indeed, the
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cut-off part corresponds to the low-energy part, as evident
from Fig. 1(e5), which in turn corresponds to a tunneling exit
position far out from the core [cf., Fig. 1(a1)]. However, these
parts of the tunneling exit point are not covered by the position
criterion, since the corresponding backpropagating trajectories
can never reach the distance specified in the position criterion
before they turn away from the core. That is to say, the position
criterion cannot describe those tunneling electrons that have
low energy and far-out tunneling exit position, which is also
reflected in a high nontunneled fraction (χ = 0.0725).

In addition to this problem, the tunneling energy obtained
in the position criterion is actually different from the static
ground-state energy, as shown in Fig. 1(e5). To obtain the
tunneling exit position (3e), however, a static tunneling energy
equal to −Ip is assumed, which leads to inconsistency.

The reader is referred to the Appendix for a further study
of different variants of the position criterion.

F. Stark position criterion

With these problems in mind, one may try a different
version of the position criterion, where the Stark shift of
the initial state is included (3f). This leads to a tunneling
exit distance slightly farther away from the core than in the
position criterion, as apparent from a comparison of Figs. 1(f1)
to 1(e1). This enlarged tunneling distance slightly improves
the capability of the Stark position criterion to cover more
ionization probability (χ = 0.0657). This can also be seen
from Figs. 1(f4) and 1(f5), where the cut-off parts are smaller.
The resulting distributions of tunneling exit time [Fig. 1(f2)]
and longitudinal tunneling momentum [Fig. 1(f3)] are also
similar to those of the position criterion (with small shifts
and reshapes). We note that the inconsistency between the
criterion and its underlying assumption of static tunneling
energy −I Stark

p is still present.

G. Dynamic position criterion

To remove the inconsistency above, we keep track of the
instantaneous energy of the electron while backpropagating
and determine the tunneling exit position on the fly (3g). The
resulting distributions of tunneling exit position [Fig. 1(g1)],
time [Fig. 1(g2)], and longitudinal momentum [Fig. 1(g3)] are
actually somewhere between those from the velocity-based
criteria and the (Stark) position criterion.

However, the cutoff in the transverse tunneling momentum
is still present at the positive side [Fig. 1(g4)], which corre-
sponds to the high-energy part [Fig. 1(g5)]. Higher energy
leads to a decrease in the tunneling exit distance in the
dynamic position criterion, and thus less ionization probability
is covered there. In addition, the nontunneled fraction here is
still high (χ = 0.118).

H. Static energy criterion

The static energy criterion (3h) assumes the electron tunnels
out with static ground-state energy. Compared to the velocity-
based criteria where energy is preferentially absorbed, the
static energy criterion leads to a distribution of tunneling exit
points farther out, which is obvious from a comparison of
Figs. 1(h1) to 1(a1). Given our previous concerns about the

suitability of energy-based criteria and the fact that nona-
diabaticity is completely neglected, it is not surprising that
the tunneling exit characteristics show some strange features.
Near the top of Fig. 1(h1), which corresponds to ionization
around the pulse center, the exit point is pushed even farther
out than nearby regions. Nonintuitive features also show up
in the tunneling exit time in Fig. 1(h2), where a dip at pulse
center is found. For the longitudinal tunneling momentum in
Fig. 1(h3), there is also a dip around zero, and for the transverse
tunneling momentum in Fig. 1(h4), an abrupt cutoff is present.
The tunneling energy, on the other hand, is simply −Ip by
definition, as shown in Fig. 1(h5).

One should especially pay attention to the different scale in
Fig. 1(h) as compared to Fig. 1(a). The substantially decreased
ionization probability using the static energy criterion points
to a very high nontunneled fraction (χ = 0.809), meaning
that the static energy criterion cannot cover the majority
of the ionization probability. This simply tells us that the
present criterion fails completely. In contrast to static tunneling
where the static energy criterion is fulfilled everywhere, it is
fulfilled almost nowhere in the case of nonadiabatic tunneling
ionization.

I. Stark energy criterion

Given the failure of the static energy criterion, one may
wonder if the Stark energy criterion (3i) is a remedy. As shown
in Fig. 1(i), the same problems persist. To make things even
worse, the ionization probability covered by this criterion is
even lower (χ = 0.834). This is indeed easy to understand.
As shown in Figs. 1(a5) and 2, energy is preferentially gained
during the tunneling ionization; the Stark-shifted energy, how-
ever, is even lower than the ground-state energy −Ip, making
this criterion even harder to cover the corresponding ionization
yield.

IV. TUNNELING EXIT CHARACTERISTICS
FROM STRONG-FIELD APPROXIMATION

Many of the above tunneling exit characteristics obtained
by classical backpropagation can indeed be qualitatively repro-
duced by SFA. In SFA, one solves the saddle-point equation

1
2 [ p + A(ts)]

2 + Ip = 0, (5)

where p is the conserved asymptotic momentum, and the
saddle-point time ts = τ + iti must be complex to satisfy this
equation. Here, τ is the tunneling exit time (or “ionization
time”) and ti is sometimes called “tunneling time,” which is
related to the ionization rate and should be distinguished from
the tunneling exit time τ . The (modified) SFA transition rate
can be determined by [52–54]

WSFA ≈ exp(2ImS)

|[ p + A(ts)] · F(ts)|1+Z/
√

2Ip

, (6)

with Z = 1 representing the parent ion charge and

S =
∫ τ

ts

{
1

2
[ p + A(t)]2 + Ip

}
dt. (7)
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The tunneling exit position can be obtained by

rSFA = Re
∫ τ

ts

[ p + A(t)]dt = Im
∫ ti

0
A(τ + it)dt. (8)

In Fig. 4(a), we show the tunneling exit characteristics
obtained by the above SFA calculations. For comparison,
the results from classical backpropagation using the velocity
criterion is plotted on top as orange dash-dotted lines (except
tunneling exit position distribution). The SFA results are scaled
in magnitude to match those of backpropagation. One can
clearly see that the results from SFA and backpropagation
agree very well. The SFA energy is slightly higher than that
of backpropagation. This is expected because of the neglect
of Coulomb potential energy. Since SFA does not restrict the
longitudinal tunneling momentum k‖, it shows up as a narrow
peak at zero [55,56]. (This is due to the pulse envelope in the
current situation. See also Ref. [17] for a comparison to PPT
theory [45–50], which does not take the pulse envelope into
account.)

A simplification of the SFA calculation close to the adiabatic
case [28–31] is indeed plausible. The adiabatic expansion

of the SFA formalism in powers of the Keldysh parameter
often provides sufficient accuracy for nonadiabatic tunneling,
even if only a few terms are retained, which also greatly
facilitates calculations. A recent application of such expansion
includes the Coulomb factor for the photoelectron spectrum
[31], which was shown to largely improve the photoelectron
momentum distribution with respect to the well-known static-
field Coulomb factor [47]. To do this, we may expand the vector
potential in terms of small ti (or small Keldysh parameter γ

corresponding to a tunneling scenario),

A(τ + iti) = A(τ ) − iti F(τ ) + 1
2 t2

i F′(τ ) + O
(
t3
i

)
, (9)

where F′(τ ) = d F(τ )
dτ

. Inserting the above expansion into
Eq. (5) and keeping the terms up to the second order in ti
results in

k(τ ) · F(τ ) = 0, (10)

which is the velocity criterion (3a), and

ti =
√

k2(τ ) + 2Ip

F 2(τ ) − k(τ ) · F′(τ )
, (11)

FIG. 4. Tunneling exit characteristics of the model helium atom obtained by different methods. By row: (a) SFA (for comparison, results
of classical backpropagation using the velocity criterion are plotted as orange dash-dotted lines); (b) adiabatic expansion of SFA; (c) ADK
theory; (d) classical backpropagation using elliptical velocity criterion. By column: (1) distribution of tunneling exit position in x-y plane
(in logarithmic scale); (2) distribution of tunneling exit time τ ; (3) distribution of longitudinal tunneling momentum k‖; (4) distribution of
transverse tunneling momentum k⊥; (5) distribution of tunneling energy E, where black dashed lines denote the ground-state energy −Ip . Laser
parameters are the same as in Fig. 1.
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where k(τ ) = p + A(τ ). The ionization rate (6) can be calcu-
lated with

ImS = −Ipti − 1

2
Re

∫ ti

0
[ p + A(τ + it)]2dt

≈ −Ipti − 1

2
Re

∫ ti

0

[
k(τ ) − it F(τ ) + 1

2
t2 F′(τ )

]2

dt

≈ − [k2(τ ) + 2Ip]3/2

3
√

F 2(τ ) − k(τ ) · F′(τ )
, (12)

leading to (up to exponential accuracy) [31]

WSFA-AE(k⊥,F) ≈ exp

[
− 2(k2

⊥ + 2Ip)3/2

3
√

F 2 − k⊥ · F′

]
, (13)

where the transverse velocity at the tunnel exit, k⊥, is equiv-
alent to k(τ ) within the current second-order expansion on ti .
The dependence on τ is omitted for simplicity. This ionization
rate is similar to the commonly used ADK rate [32–34]

WADK(k⊥,F ) ≈ exp

[
−2(k2

⊥ + 2Ip)3/2

3F

]
, (14)

but with a different denominator in the exponent. Equation (13)
has been derived in Ref. [31]. Here, we show that this simple
modification improves the way nonadiabaticity is taken into
account with respect to the ADK theory significantly. The
field derivative F′ in Eq. (13) introduces the dependence of
the tunneling rate on the carrier frequency ω and the pulse
envelope, and it is easy to infer that the nonadiabaticity
induced by the envelope is smaller than that from the car-
rier. Along the same line, the exit position can be obtained
from

rSFA-AE(k⊥,F) = − F
2

k2
⊥ + 2Ip

F 2 − k⊥ · F′ , (15)

while the ADK theory gives

rADK(k⊥,F) = − F
2

k2
⊥ + 2Ip

F 2
. (16)

In Fig. 4(b), we show the tunneling exit characteristics
obtained by the adiabatic expansion of the SFA. Obviously, the
exit conditions are very close to those of the full SFA results
in Fig. 4(a).

The result of the ADK theory is shown in Fig. 4(c), which
replaces the denominator

√
F 2 − k⊥ · F′ in the adiabatic

expansion SFA by F . It gives a much narrower distribution of
tunneling exit position [Fig. 4(c1)]. Note that the exit position
is still a distribution instead of a line because of the transverse
tunneling momentum k⊥ at the exit (16). This effect can also
be observed in the broadening of the distribution of exit points
in the dynamic position criterion with respect to the static
one, see Fig. 1(g1). If k⊥ is set to 0, then the tunneling
exit position reduces to a line −F̂Ip/F . The distribution of
tunneling exit time [Fig. 4(c2)] is also slightly narrower due
to neglect of nonadiabatic effects, which in addition results
in a distribution of transverse tunneling momentum centered
at zero [Fig. 4(c4)]. The complete neglect of nonadiabaticity
is best illustrated in the electron energy at the tunnel exit
[Fig. 4(c5)], which sits exactly at the ground-state energy −Ip.

FIG. 5. Correlated distribution of tunneling exit time τ and (a)
longitudinal tunneling momentum k‖ and (b) elliptical tunneling
momentum kε , for the model helium atom obtained by full SFA (in
logarithmic scale). Laser parameters are the same as in Fig. 1.

This comes straight from

EADK = 1
2k2

⊥ + F · rADK = −Ip. (17)

Above comparison of the results from the adiabatic ex-
pansion of SFA and the ADK theory clearly shows that
for the present case of circularly polarized laser fields, the
slight modification in the denominator of the exponent in
the tunneling ionization rate given in Eq. (13) incorporates
nonadiabatic effects during tunneling ionization accurately.

As a matter of fact, the SFA calculations may even serve as
a guide to deduce new improved velocity-based criteria. We
show in Fig. 5(a) the correlated distribution of tunneling exit
time τ and longitudinal tunneling momentum k‖ from SFA.
Although not big, clear deviation from zero is observed for
k‖. As discussed, k‖ = 0 results from a second-order adiabatic
expansion of the saddle-point equation (5) in terms of small ti .
Indeed, one can expand it to the third order, giving an improved
velocity criterion

kε ≡ −k · F̂ − 3F · F′ − k · F′′

6F

k2 + 2Ip

F 2 − k · F′ = 0. (18)

For a circularly polarized long pulse, this criterion reduces
to the velocity criterion (3a) [57]. We name this criterion
the “elliptical velocity criterion,” since its improvement could
become noticeable when a short and/or elliptically polarized
laser pulse is used. We show the correlated distribution of τ
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FIG. 6. Nontunneled fraction χ given by different tunneling
criteria during the backpropagation of the ionized wave packet of
the model helium atom. Laser parameters are the same as in Fig. 1
except for a varying peak intensity.

and kε from SFA calculations in Fig. 5(b), where kε is much
more concentrated to zero than k‖.

We then apply the elliptical velocity criterion to the classical
backpropagation and show the results in Fig. 4(d), which
are similar to those from the velocity criterion but with a
longitudinal tunneling momentum closer to SFA results in
Fig. 4(a).

As an extension to the current work, it would be interesting
to study the exit characteristics in the case of elliptically or
linearly polarized pulses, where the elliptical velocity criterion
is expected to provide more improvements to the velocity
criterion using classical backpropagation.

V. APPLICABILITY OF DIFFERENT
TUNNELING CRITERIA

We now study the intensity dependence of the nontunneled
fraction given by different tunneling criteria in Fig. 6. For the
parameters chosen here, ionization takes place mostly in the
tunneling regime, as can be seen from the Keldysh parameter in
Fig. 6. It is clear that velocity-based criteria (velocity, elliptical
velocity, parabolic velocity, turning point, and minimal speed
criteria) result in a very low nontunneled fraction, which means
that the majority of the ionization probability is accounted for
under the corresponding mechanism. Moreover, the changing
trend of the nontunneled fraction from adiabatic to nonadia-
batic tunneling ionization is in agreement with the tunneling

TABLE II. Applicability of different tunneling criteria.

Tunneling criterion Nonadiabaticity Consistency Low χ

Velocity � � �
Elliptical velocity � � �
Parabolic velocity � � �
Turning point � � �
Minimal speed � � �
Position Partial
Stark position Partial
Dynamic position Partial �
Static energy �
Stark energy �

picture: as the Keldysh parameter decreases, the ionization
moves deeper into the tunneling regime and the nontunneled
fraction decreases. In contrast, other tunneling criteria give
quite high nontunneled fractions, with questionable trends.
This means they are less suitable, or even invalid classical
pictures of the tunneling process.

In Table II we summarize the applicability of different
tunneling criteria as a classical description of the quantum
tunneling dynamics. Here, three conditions are used:

(1) Whether the tunneling criterion includes nonadiabatic
tunneling effects.

(2) Whether the tunneling criterion is self-consistent. As
above, the (Stark) position criterion is inconsistent to the
underlying static (Stark-shifted) tunneling energy assumption.

(3) Whether the tunneling criterion leads to a low nontun-
neled fraction χ in the known tunneling regime.

From this comparison, it is clear that only velocity-based
criteria are suitable candidates as the classical picture of
quantum tunneling. Also, they show zero tunneling time delay,
in agreement with our conclusion before [16,17].

VI. CONCLUSION

We studied the tunneling ionization of a model helium
atom in an intense, short, circularly polarized laser field with
the classical backpropagation method and retrieved the initial
tunneling exit information by propagating the ionized wave
packet backward in time. Stopping the backpropagation in dif-
ferent ways, we studied and compared ten different tunneling
criteria on the same footing. We showed that the previously
studied velocity criterion (I) and the elliptical velocity (II),
parabolic velocity (III), turning point (IV), and minimal speed
criteria (V) proposed here are successful candidates. They are
all rooted in the zero-kinetic-energy principle as the commonly
accepted classical picture of the quantum tunneling dynamics.
These velocity-based criteria fully and consistently incorporate
nonadiabatic tunneling effects, they give intuitive tunneling
exit coordinates, and are able to account for the observed
tunneling ionization probability. Under these five criteria, a
zero tunneling time delay is found. Position-based criteria have
the same origin, but in addition assume static total tunneling en-
ergy, leading to inconsistencies and reduced capability to cover
the observed ionization yield (high nontunneled fraction).
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Positive tunneling time delays found using these criteria can
thus be considered as a misinterpretation of the attoclock
experimental data based on models that do not take full and
consistent account for nonadiabaticity. Additionally, energy-
based tunneling criteria fail completely.

In addition, the connection between the velocity criterion
and SFA is explored and a set of simple ADK-like formulas
[Eqs. (13) and (15)] is obtained to describe the tunneling
exit characteristics. A nonadiabatic term is identified in the
formula that accounts for the nonadiabaticity in a tunneling
process accurately. As a step further, a third-order expan-
sion of the saddle-point equation was utilized to propose
the elliptical velocity criterion, under which the tunneling
exit characteristics obtained through classical backpropagation
agree well with those calculated using SFA. In particular, a
narrow distribution of the longitudinal tunneling momentum
k‖ is reproduced nicely. We hope this article serves as a guide
to future theoretical and experimental works, given that the
characteristics provided here may well act as a precise set
of initial conditions to launch classical trajectories in Monte
Carlo–like simulations.
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APPENDIX: VARIANTS OF THE POSITION CRITERION

The position criterion (3e) studied here results from a
number of approximations. Here we show that these approxi-
mations do not change the conclusion made.

In parabolic coordinates, the exit point in the tunneling
coordinate η = r − F̂ · r is obtained from [38]

− β

2η
+ m2 − 1

8η2
− Fη

8
= −Ip

4
, (A1)

FIG. 7. Tunneling exit characteristics of the model helium atom obtained by variants of the position criterion. By row: (a) position criterion
(3e); (b) full position criterion (A1); (c) two-dimensional position criterion (A6); (d) full two-dimensional position criterion (A4). By column: (1)
distribution of tunneling exit position in x-y plane (in logarithmic scale); (2) distribution of tunneling exit time τ ; (3) distribution of longitudinal
tunneling momentum k‖; (4) distribution of transverse tunneling momentum k⊥; (5) distribution of tunneling energy E, where black dashed
lines denote the ground-state energy −Ip . Laser parameters are the same as in Fig. 1.
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where

β = Z − (|m| + 1)

√
2Ip

2
(A2)

is the separation constant [38], Z is the charge of the parent ion,
and m is the magnetic quantum number of the initial state. For
typical laser parameters, η � 1, the 1/η2 term can be neglected
in Eq. (A1), resulting in the solution

η =
Ip +

√
I 2
p − 4βF

F
. (A3)

Further assuming −F ‖ r , we have the position criterion (3e)
[39]

r =
Ip +

√
I 2
p − 4βF

2F
. (3e)

Figure 7(a) shows the tunneling exit characteristic obtained
from the position criterion (3e), which is a replica of Fig. 1(e).
Figure 7(b) shows the corresponding tunneling exit informa-
tion obtained from the full position criterion (A1). Obviously,
the results are similar and the same problems persist for the
full position criterion.

The full two-dimensional exit point can be obtained from
the three-dimensional version (A1) by simply replacing |m|

with |m| − 1
2 :

− β2D

2η2D
+

(|m| − 1
2

)2 − 1

8η2
2D

− Fη2D

8
= −Ip

4
, (A4)

where

β2D = Z −
(

|m| + 1

2

)√
2Ip

2
. (A5)

Further simplification results in the two-dimensional position
criterion

r2D =
Ip +

√
I 2
p − 4β2DF

2F
. (A6)

Tunneling exit conditions from the 2D position criterion (A6)
and the full 2D position criterion (A4) are shown in Figs. 7(c)
and 7(d), respectively. Evidently, the results are once again
similar and the conclusions made for the position criterion (3e)
still hold.

We skip the Stark-shifted and dynamic versions of all these
variants of the position criterion as they result in the same
conclusions. We stress that the problems encountered with
the position-based criteria arise because they do not fully and
consistently include the nonadiabaticity. Therefore, velocity-
based criteria should be used in the nonadiabatic process of
tunneling ionization.
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