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Abstract
Obtaining a numerical solution of the time-dependent Schrödinger equation requires an initial
state for the time evolution. If the system Hamiltonian can be split into a time-independent part
and a time-dependent perturbation, the initial state is typically chosen as an eigenstate of the
former. For propagation using approximate methods such as operator splitting, we show that
both imaginary-time evolution and diagonalization of the time-independent Hamiltonian
produce states that are not exactly stationary in absence of the perturbation. In order to avoid
artifacts from these non-stationary initial states, we propose an iterative method for calculating
eigenstates of the real-time propagator. We compare the performance of different initial states
by simulating ionization of a model atom in a short laser pulse and we demonstrate that much
lower noise levels can be achieved with the real-time propagator eigenstates.

Keywords: time-independent Schrödinger equation, time-dependent Schrödinger equation,
eigenstates, split-operator method, laser-induced ionization
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1. Introduction

In many fields of theoretical quantum physics it is neces-
sary to calculate eigenstates of operators. Energy eigenstates
of a quantum system, i.e. eigenstates of a time-independent
Hamiltonian H0, are of particular relevance because they are
stationary when they evolve in real time according to the time-
dependent Schrödinger equation (TDSE) with the Hamiltonian
H0. Here, ‘stationary’ means that the state changes only by
a purely time-dependent phase factor. A standard situation
in quantum physics is that a system starts out in an energy
eigenstate and then interacts with external fields described
by a time-dependent interaction Hamiltonian Hi(t) so that the
TDSE for the real-time propagation (RTP) reads

i
d
dt
|ψ(t)〉 = H(t)|ψ(t)〉 (1)
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(atomic units are used unless stated otherwise) with the total
Hamiltonian H(t) = H0 + Hi(t). If the external fields are of
moderate strength, the deviation of the time-dependent state
|ψ(t)〉 from the initial state might be small but nevertheless
too large to be conveniently described by time-dependent per-
turbation theory. In this case, the numerical solution of the
TDSE is a commonly used approach. However, the accuracy
of any numerical method is limited, so that eigenstates of
H0 or their numerical implementations are not necessarily
stationary under numerical propagation even if Hi = 0. If these
errors are comparable with the physical excitations caused by
the external fields, the actual physics will be obscured and
the numerical results will not be reliable. In this letter, we
show that the problem is elegantly circumvented by choosing
the initial state as an eigenstate of the numerical real-time
propagator of the field-free system rather than an eigenstate
of the field-free Hamiltonian.

A simple, long-standing and popular method for obtain-
ing ground states is imaginary-time propagation (ITP), also
known as relaxation method, i.e. the repeated application of the
numerical short-time propagator with an imaginary time step
starting from an arbitrary initial state [1]. It has been applied
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not only to local potentials of one-particle and few-particle
systems [2], but also to obtain many-electron Kohn–Sham
ground states in density functional theory [3, 4], and to find
solutions of the Gross–Pitaevskii equation [5, 6]. The method
works due to the relative suppression of excited states by
factors that are exponential in the energy differences relative
to the ground state. When using the state resulting from ITP as
an initial state for RTP, we face the same problem as described
above: the state might not be exactly stationary under
numerical RTP.

This letter focuses on the split-operator method [7, 8] as
a propagation method, which is similarly widespread as ITP
[2, 4, 9]. In principle, our proposal of using real-time propaga-
tor eigenstates (RTPEs) can be applied to any RTP method, but
our study is less relevant for propagation schemes where the
error term in the propagators does not change the eigenstates,
e.g. Crank–Nicolson propagation [10] or the Chebychev
method [11].

In what follows, we first describe briefly why numerical
ITP and numerical RTP have different eigenstates and how to
calculate eigenstates for a general operator using the power
method. We then apply this method to compare imaginary-
time propagator eigenstates (ITPEs) to RTPEs in a simple
one-dimensional atom. We evaluate the performance of these
states when used as initial states in real-time simulations of
ionization of the model atom by short laser pulses. The results
show that simulations with RTPEs are reliable in situations
involving low photoelectron yields, where other initial states
fail to produce physical results.

2. Numerical approximations and power method

Parts of this section have been presented before [12]. In the
split-operator scheme [7, 8], the short-time propagator for a
Hamiltonian H0 = T + V with a momentum-dependent part T
and a position-dependent part V is approximated as

USO
RTP := e−iVΔt/2 e−iTΔt e−iVΔt/2 = e−iHeffΔt. (2)

This operator splitting is not exact since

Heff = H0 +
Δt2

24
[V + 2T, [V , T]] +O(Δt4). (3)

Hence, USO
RTP is actually the short-time propagator for a dif-

ferent Hamiltonian Heff . The exact short-time propagator
for H0 is

URTP = e−iH0Δt = USO
RTP +

iΔt3

24
[V + 2T, [V , T]] +O(Δt4).

(4)
The similarity of the error terms in (3) and (4) is analogous
to time-dependent perturbation theory, where the lowest-order
change of the short-time propagator is proportional to the
change of the Hamiltonian. Because these error terms are not
functionals of H0, it is obvious that URTP and USO

RTP have not
exactly the same eigenstates. Moreover, when inserting an
imaginary time step Δt = −iΔτ instead of a real time step
into the split-operator propagator, the error term in (3) switches

sign. Hence, the eigenstates of the imaginary-time propagator

USO
ITP = e−VΔτ/2 e−TΔτ e−VΔτ/2 (5)

also differ from those of USO
RTP, no matter how large or small

the step size Δτ is chosen. Therefore, to obtain states that
are numerically stationary under RTP, we need to find the
eigenstates of USO

RTP.
Even when it is not feasible to diagonalize an operator

exactly, it is often possible to find eigenstates by iterative
methods. ITP is an example of this: it finds an eigenstate of
USO

ITP. More generally, let A be an operator whose normalized
eigenstates |χn〉 satisfy

A|χn〉 = αn|χn〉. (6)

and form a basis. For an arbitrary state |ψ0〉 =
∑

ncn|χn〉 define

|ψk+1〉 =
A|ψk〉

||A|ψk〉||
, k = 1, 2, 3, . . . (7)

This sequence converges to the eigenstate corresponding to
the eigenvalue with the largest magnitude that is present in
|ψ0〉. More precisely, if |α0| > |αn|∀ n �= 0 and c0 �= 0, then
|ψk〉 → |χ0〉 for k →∞ (up to a phase factor) [13]. These
very basic considerations lead to the probably simplest eigen-
state calculation scheme, known as the power method: apply
some power Aj of the operator A, normalize, and repeat until
changes are sufficiently small. Eigenstates other than |χ0〉
can be calculated with the same method when additionally
projecting out (i.e. removing) all states with larger eigenval-
ues once they are known. In numerical implementations the
projection has to be done repeatedly because numerical errors
can cause the unwanted states to reappear in the course of the
iteration.

To use the power method to search for eigenvalues other
than those with large absolute values, one may transform the
spectrum of an operator. ITP is an example for this: instead of
H0, the operator A = e−H0Δτ (or an approximate implementa-
tion of it, such as the split-operator imaginary-time propagator
(5)) is considered and thus the ground-state energy of H0 is
transformed into the largest eigenvalue of A.

For calculating RTPEs—eigenstates of the unitary real-
time propagator—it is necessary to transform the spectrum to
make the power method converge at all, since all eigenvalues
e−iEkΔt have magnitude 1. (For the approximate propagator,
the ‘energies’ Ek in this expression are not necessarily equal to,
but very close to the eigenvalues of the Hamiltonian. Strictly
speaking, in the following discussion, the term energy refers to
the real-time propagator.) A simple shift in the complex plane
solves this issue,

A = USO
RTP + λ, λ ∈ C, (8)

see figure 1 for examples. Hence, in our implementation, the
eigenstates are found by repeated application of the opera-
tor (8) and normalization of the state. The shift λ does not
change the eigenstates but only the eigenvalues. It is only
added for the eigenstate calculation, not in the actual time
evolution. The optimal shift depends on the structure of the

2



J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 19LT01

Figure 1. Illustration of the spectrum (symbols on the circles) of the
shifted real-time propagator in the complex plane. The horizontal
(vertical) axis shows the real (imaginary) part of the eigenvalues.
The ground-state eigenvalue (blue cross) and the value
corresponding to the maximum energy Emax (red square) are
highlighted. (a) The shift λ = −1 + i is applicable if Emax Δt <
π/2. It facilitates fast convergence. (b) The shift λ = 1 + i allows
for larger values Emax Δt < 3π/2. In both (a) and (b), the
ground-state eigenvalue is guaranteed to have the largest magnitude
(indicated by the dashed circle) if |E0Δt| 	 π/2.

spectrum. We assume that the desired ground-state energy E0

is negative (which can always be achieved by shifting the
potential or, equivalently, by multiplying USO

RTP with a suitable
phase factor). In finite-dimensional implementations there is
also a largest energy Emax. The split-operator method is typi-
cally used together with the discrete Fourier transform on an
equidistant grid with spacing Δx to represent the momentum-
dependent operators as multiplications in Fourier space. In
this case, T = − 1

2 d2/dx2 implies Emax ≈ p2
max/2 with pmax =

π/Δx. To avoid overlapping eigenvalues on the unit circle, Δt
must be chosen such that

(Emax − E0)Δt < 2π. (9)

The method works if and only if the shift λ is chosen such
that the ground state corresponds to the eigenvalue of A with
the largest magnitude. Figure 1 illustrates this by showing the
locations of the eigenvalues in the complex plane. Figure 1(a)
shows λ = −1 + i, which certainly works if |E0Δt| 	 π/2
and Emax Δt < π/2. If |E0Δt| 	 π/2 and Emax Δt < 3π/2
(i.e. allowing larger time steps), the shift λ = 1 + i is a safe
default, see figure 1(b). RTPEs in this letter are calculated
with λ = 1 + i. The convergence speed depends on the ratio
of the two largest eigenvalues, typically those corresponding
to the ground state and the first excited bound state with
energy E1. If |E0Δt| 	 π/2, the difference between these
eigenvalues is imaginary in first order, e−iE0Δt − e−iE1Δt ≈ i
(E1 − E0)Δt +O(Δt2). Thus, shifting these eigenvalues to the
imaginary axis by choosing Reλ = −1 maximizes the ratio in
magnitude.

The step size Δτ in ITP is in principle arbitrary. A typical
procedure is to start with a large time step size for quick
and rough convergence, followed by reduced step sizes in
order to reduce errors in the split-operator approximation. In
contrast, Δt is fixed at the same value that is used in the actual
time propagation and due to the constraints described above
it is not possible to increase its value arbitrarily for increased
convergence speed. On the one hand this reduces flexibility
and fine-tuning of the convergence speed. On the other hand it

takes away the burden of an additional non-physical parameter
that has to be controlled separately. In practice, it can be
convenient to begin with ITP for fast convergence and then
switch to the power method for the shifted real-time propagator
for finding the RTPEs.

The power method can also be used to calculate eigenstates
of H0, e.g. by using the shifted operator A = H0 − Emax so that
all eigenvalues are negative and the ground-state eigenvalue
has the largest magnitude. From (3) one could assume that
eigenstates of H0 are ‘halfway’ between ITPEs and RTPEs if
Δτ = Δt. In practice, however, H0 eigenstates and ITPEs are
similarly unstable, so the former are no significant improve-
ment over the latter.

3. Example system

As an example application, we consider a one-dimensional
model hydrogen atom in a linearly polarized laser pulse. The
potential is given by V(x) = −1/

√
x2 + a with a = 2 a.u. The

Hamiltonian in velocity gauge is H(t) = (p+ A(t))2/2 + V(x).
For this specific value of a, the field-free system (A(t) = 0) has
an analytic ground-state solution with energy E0 = −0.5 a.u.
[14]. Numerically, both the potential and the position wave
function are represented on an equidistant grid with grid
spacing Δx = 0.2 a.u. For the simulation with external field,
enough grid points (typically 8192) are used so that the wave
function does not come close to the grid boundary during
the time evolution. The momentum part in the split-operator
scheme is implemented using fast Fourier transforms.

Figure 2 shows the ground state of the field-free system, cal-
culated by various methods. When using the power method we
find that after 105 steps, the ITPE seems to be far superior to the
RTPE which has a high-lying tail at 10−17 whereas the ITPE is
already at the noise level of around 10−30. This result demon-
strates the fast convergence of the ITP method. Another 105

steps later, however, the RTPE shows no qualitative difference
to the ITPE anymore.

Both the real-time and the imaginary-time propagators as
well as the Hamiltonian can also be diagonalized directly for
this one-dimensional system. To this end, the matrix represen-
tation in position space is calculated, e.g.

(
USO

RTP

)
jk
=

〈
x j|USO

RTP|xk

〉
, (10)

where |x j〉 is a position wave function that is non-vanishing
only at grid point j. This matrix is unitary (for USO

RTP) or Hermi-
tian (for USO

ITP or H0) and can be diagonalized. Diagonalization
does not provide lower noise levels or significantly better
results than 2 × 105 steps of the power method, indicating
good convergence of the power method, see figure 2. Although
the converged states do not show qualitative differences on the
scale of figure 2, they will show important differences when
used in the time-dependent calculations.

The laser pulse in the time-dependent Hamiltonian
operator is defined by its vector potential A(t) = A0 sin2

(πt/Tp)cos(ω(t − Tp/2)), where Tp is the total pulse duration
and 0 � t � Tp. Here, Tp = 10 × 2π/ω (ten-cycle pulse) and
ω corresponds to 450 nm wavelength (ω ≈ 0.101 a.u.).
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Figure 2. Position-space probability distributions of ground states
calculated on 1024 grid points with a grid spacing of 0.2 a.u. The
RTPEs (dot-dashed and solid lines) correspond to a time step of
0.02 a.u., the ITPEs (dashed lines) are calculated with Δτ =
0.02 a.u. As the system is symmetric, we show only the right half of
the grid completely. It can be seen that 105 steps of the ITP are much
more effective in suppressing the ‘tail’ of the wave function than the
same number of steps of the RTP. After twice the time, however,
there is no qualitative difference visible between the propagators.
Note that diagonalizing the RTP or ITP does not push the noise level
further down. The analytic ground state (black dotted line) falls
exponentially.

Our observables in this benchmark system are the ion-
ization yield which we define as the probability to find the
electron in |x| > R0 := 30 a.u.,

∫
|x|>R0

|〈x|ψ(Tp)〉|2 dx. (11)

and the photoelectron energy spectrum which we calculate
by projecting the final wave function onto unbound eigen-
states |ψE〉 that are calculated by diagonalizing the real-time
propagator.

4. Results and discussion

The parameters of our time-dependent system are such that
we expect ionization to be in the multiphoton regime (Keldysh
parameter

√
2Ip/A0 > 1, where Ip = −E0 is the ionization

potential). Therefore, the ionization yield is expected to
increase with the laser intensity I approximately as a power
law IN where N is the number of photons needed to overcome
the ionization threshold. The model system can be ionized by
absorption of five 450 nm photons, i.e. the ionization yield for
this process scales like I5. Indeed, for high intensities above
1012 W cm−2, figure 3 shows this behaviour, irrespective of
the chosen calculation method for the ground state. How-
ever, decreasing the intensity shows the background noise in
the ITPE quickly. Even at vanishing intensity the ‘ionization
probability’ is >10−12 for the chosen time-step sizes. In the
limit of small imaginary time steps Δτ , ITPEs approach
H0 eigenstates which do not provide better performance
(black solid curve). The noise level can be lowered slightly by
decreasing the real-time step size Δt for the propagation in the
laser field (thus decreasing the error terms in (3) and (4)) but
at the cost of increased computation time (red dashed curve).

Figure 3. Ionization yield as a function of laser peak intensity for
different initial states. For small intensities, the calculations starting
with ITPEs or H0 eigenstates approach relatively large (>10−12)
unphysical values which completely conceal the physical process
that is visible with RTPEs: one-photon ionization due to photons
from the high-frequency tail of the laser spectrum. The ITPE (state
used for the dashed curves) is calculated by diagonalizing the ITP
operator with Δτ = 0.01 a.u. The H0 eigenstate (state used for the
thin black solid line) is calculated by diagonalizing the Hamiltonian.
The RTPE (state used for the dot-dashed curve with squares) is
calculated by 2 × 105 iterations of the power method with
Δt = 0.02 a.u. Propagation in the laser field is carried out with
Δt = 0.02 a.u., except for the red dashed curve with Δt = 0.01 a.u.
Additionally the intensity-dependent slope of the RTPE ionization
yield is shown to highlight the transition from one-photon over
three-photon to five-photon ionization.

In contrast, the RTPE ionization yield continues to fall
by many orders of magnitude with decreasing intensity. The
field-free limit (i.e. propagation for the duration of the laser
pulse but with A0 = 0) is 4 × 10−24. It is almost identical to
the ‘ionization yield’ of the initial state prior to time evolution
according to the definition (11). At low intensities, we observe
that the dependence of the yield on intensity is flatter than I5.
In figure 3 we include a curve showing the intensity-dependent
slope of the yield and we find that the slope decreases from
5 through 3 to 1 as we decrease the intensity. This happens
because the finite length of the laser pulse implies that the
frequency spectrum of the pulse covers a broad range of fre-
quencies. The highest frequencies are able to ionize the atom
with just one photon. Therefore, at small intensities single-
photon ionization from the high-frequency tail of the spectrum
dominates the ionization signal.

As a second observable, figure 4 shows the energy spectrum
of the photoelectron at the end of the laser pulse for different
peak intensities and initial states. In multicycle non-resonant
above-threshold ionization (ATI) with linearly polarized fields,
the photoelectron spectrum exhibits peaks at the energies

Eel,n = nω − Ip − Up, (12)

where n counts the number of absorbed photons and Up =
A2

0/4 is the ponderomotive potential [15]. The high-intensity
curves in figure 4 show clear ATI peaks at the expected
positions. Here, the RTPE initial state produces a clean ATI
peak structure over the entire range of displayed photoelectron
energies, while the ITPE initial state is able to reproduce the
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Figure 4. Photoelectron energy spectrum after ionization with a
ten-cycle 450 nm laser pulse at three different peak intensities. Solid
coloured lines show results of RTPE calculations; they give sensible
spectra for all intensities. Black dashed lines are calculated using the
ITPE as initial state. At 1013 W cm−2 intensity, RTPE and ITPE
agree perfectly for the first five peaks, whereas at 1012 W cm−2

intensity already the second ATI peak shows unphysical oscillations.
At small intensities, the photoelectron spectrum is dominated by
one-photon ionization and it is reproduced by first-order
perturbation theory (black dotted line); the rapid oscillations reflect
the shape of the high-energy tail of the laser spectrum.

first five peaks perfectly. In fact, the ponderomotive shift in
(12) makes the energy of the five-photon peak drop below
zero at the intensity 9 × 1012 W cm−2, which causes the
breakdown of the IN behaviour of the ionization yield at
the highest intensities shown in figure 3. In the intermediate
intensity range where the ITPE still gives good ionization
yields (see figure 3), the ITPE photoelectron spectrum agrees
well with the RTPE result at the first peak but the smaller
features at higher electron energy are slightly disturbed or even
completely obscured. Single-photon ionization at small laser
intensities can be described well by first-order time-dependent
perturbation theory, which predicts the photoelectron spectrum

S(E) =

∣∣∣∣〈ψE|p|ψ(0)〉
∫ ∞

−∞
A(t)ei(E−Ip)t dt

∣∣∣∣
2

(13)

with the photoelectron energy E and unbound energy eigen-
states |ψE〉. At low intensity, the TDSE result starting
in the RTPE agrees perfectly with the perturbative result
(see figure 4) whereas the ITPE does not give any reasonable
result (not shown). This result confirms our interpretation of
the low-intensity behaviour of the ionization yield in figure 3
and it shows that the RTPE method allows us to perform
simulations with physical results in situations where other
methods may fail.

5. Conclusions

While ITP with the split-operator method is easy to implement,
it inherently produces eigenstates that are numerically not per-
fectly stationary even when fully converged. We demonstrate
that this non-stationarity causes problems in the simulation
of laser-induced ionization at low laser intensities where the
physical results are obscured by artifacts from non-stationary
initial states. Our solution—calculating eigenstates of the real-
time propagator by an iterative power method—provides noise
levels as much as 12 orders of magnitude lower than ITP. In our
example system we could show a transition from one-photon
to five-photon ionization as the laser intensity is increased, a
phenomenon that is only visible with the improved initial state.

For more complex problems, e.g. in three dimensions or
with a larger number of active particles, computational effi-
ciency is an issue and the relatively slow convergence of
the RTP power method is unfavourable, whereas ITP with
adaptive step sizes exhibits quick convergence. However, the
advantages of both methods can be combined if the result from
ITP is used as initial state for the iterative procedure that finds
the desired eigenstates of the real-time propagator. Impor-
tantly, this method is not much more difficult to implement
than the usual imaginary-time method and thus it has become
our weapon of choice when working with the split-operator
propagator.
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