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Abstract
We train a model atom to recognize pixel-drawn digits based on hand-written numbers in the
range 0–9, employing intense light–matter interaction as a computational resource. For training,
the images of the digits are converted into shaped laser pulses (data input pulses). Simultaneously
with an input pulse, another shaped pulse (program pulse), polarized in the orthogonal direction,
is applied to the atom and the system evolves quantum mechanically according to the
time-dependent Schrödinger equation. The purpose of the optimal program pulse is to direct the
system into specific atomic final states (classification states) that correspond to the input digits. A
success rate of about 40% is achieved when using a basic optimization scheme that might be
limited by the computational resources for finding the optimal program pulse in a
high-dimensional search space. Our key result is the demonstration that the laser-programmed
atom is able to generalize, i.e. successful classification is not limited to the training examples, but
also the classification of previously unseen images is improved by training. This atom-sized
machine-learning image-recognition scheme operates on time scales down to tens of
femtoseconds, is scalable towards larger (e.g. molecular) systems, and is readily reprogrammable
towards other learning/classification tasks. An experimental implementation of the scheme using
ultrafast polarization pulse shaping and differential photoelectron detection is within reach.

1. Introduction

Artificial intelligence (AI) is an area of growing interest and with an enormous range of applications, due to
recent successes and breakthroughs in deep learning, enabled by the steady increase in (classical)
computational power [1, 2]. Within this field, image recognition, i.e. the classification of different but
conceptually equivalent (input) images into unique (output) categories, has been one of the prime
applications of AI and machine learning for many years [3]. A key component of machine learning is the
ability of the trained system to generalize [4–6], i.e. to correctly classify input data that was not part of the
training data.

With recent advances in optical science and technology, in particular optical neuromorphic hardware [7],
it has recently been possible to accelerate image recognition to sub-nanosecond timescales [8]. Here, the
operation timescale is determined by the speed of light at which information propagates in microscopic
waveguides on the chip, and is thus directly proportional to its size: The smaller the device and the
computational units, the faster the clock rates for the recognition operations will become. The fundamental
limit to further minimization is the atomic scale.

In atomic and molecular physics, extreme timescales down to femtoseconds and even attoseconds are
currently being explored and controlled by measuring and steering the motion of one, two, or more
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electrons [9–14] with lasers. Atomic states are excited and coupled on ultrafast (femtosecond) time
scales [15], providing a quantum analogue of neurons (quantum states) and axons (laser coupling between
states). Ground-state atoms and molecules are fully quantum-correlated systems and therefore entanglement
arises naturally when these systems fragment into two or more particles [16, 17], e.g. due to photoionization
or dissociation. Control of entangled states using attosecond and femtosecond laser pulses has also been
addressed recently [18–21]. The natural question is whether atoms and their interaction with intense laser
light can be used as a high-speed computational resource in applications such as machine learning for image
recognition. This question has recently been addressed for the case of two-class recognition of hand-written
pixel-drawn digits and three-class recognition of iris-flower types, using the process of high-order harmonic
generation and thus an optical output channel [22].

In the present work, we investigate whether an atom could at the same time act as a quantum processor
and readout register for machine learning, mapping two-dimensional images of digits directly onto atomic
quantum states, referred to as classification states in the following. The latter could then be either read out or
serve as input to subsequent (quantum) processing tasks. Our approach is to be distinguished from recent
developments referred to as quantum machine learning [23, 24], where the ultimate goal is to train quantum
computing devices to perform quantum tasks, and also from the earlier proposals to mimic specific quantum
gates in laser-driven molecules [25–27] or Rydberg atomic systems [28]. In our case, we train quantum
systems directly and demonstrate generalization capability, without the intention of developing a quantum
algorithm as sequence of established quantum gates. Being based on the time evolution of a quantum system,
our scheme benefits from the same quantum effects that can enable quantum speedup in the framework of
quantum computing, see the discussions specifically in the context of classification tasks [29, 30].

2. Methodology

In the following, we introduce our scheme and present the results of a model-atom simulation as a proof of
principle. Both the input data and the code that processes the data are supplied to the atom in the form of
shaped femtosecond light pulses, namely input/data(id) pulse and program/code(pc) pulse (see figure 1).
Due to the ultrafast time scale, incoherent coupling to the environment can be neglected, i.e. the dynamics of
the atom is described by the time evolution of a pure state evolving according to the time-dependent
Schrödinger equation (TDSE) i∂tΨ =HΨ (atomic units are used unless stated otherwise). We show that the
atom can be successfully trained, despite a huge parameter space for the optical pc pulse, which is obtained
by an evolutionary optimization procedure [31]. We expect that the training approach will be significantly
improved in the future, e.g. by using more suitable parameterizations for the program pulse and advanced
statistical methods based on Bayesian inference. Finding the optimal pc pulse, which is initially unknown,
can also be understood and formulated as a reinforcement learning problem [32]. After completed training,
the laser-driven atom is able to take its decisions within femtoseconds and may therefore be viewed as
ultrafast AI, where the term ‘ultrafast’ refers to the time scale of the system behavior, not necessarily to the
learning process. An experimental implementation would involve a gas-jet target, supplying continuously
fresh atoms, so that the quantum-mechanical time evolution always starts from the same initial state.
Therefore, unwanted heating of the quantum system is not an issue.

3. Atomic model

In our simulations, we employ a multi-level HamiltonianH0 to describe the atom, which is dipole coupled to
an external arbitrarily polarized time-dependent laser field vector E(t) = Ex(t)ex + Ey(t)ey with Cartesian
unit vectors ex,ey. The interacting Hamiltonian thus reads

H=H0 +VxEx (t)+VyEy (t) . (1)

Using a 20-level model with basis states 1s, 2s, 2p−1,1, 3s, 3p−1,1, 3d−2,0,2, 4s, 4p−1,1, 4d−2,0,2, 4f−3,−1,1,3, we
have

H0 =


E1s 0 0
0 E2s 0
0 0 E2p . . .

 , (2)
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Figure 1. Conceptual representation of atomic machine learning. A quantum system (here: an atom) interacts with an input/data
(id) pulse and a program/code (pc) pulse (here: along two orthogonal polarization directions) to deliver the data and the code,
respectively. The quantum-state populations after the interaction are read out (e.g. by projecting them into the continuum and
employing an electron spectrometer) and the maximum population among the classification states (after renormalization)
indicates the classification result. The pc pulse is found by training on a large number of pixel-drawn digits.

Vx =


0 0 a −a
0 0 a −a
a a 0 0
−a −a 0 0 . . .

 , (3)

and

Vy =


0 0 −ia −ia
0 0 −ia −ia
ia ia 0 0
ia ia 0 0 . . .

 . (4)

For simplicity, the energies are chosen as Enl =−1/(n+ 1)2. The coupling matrix elements read

V jk
x = ⟨l,m| sinθ cosϕ |l ′,m ′⟩ and V jk

y = ⟨l,m| sinθ sinϕ |l ′,m ′⟩, where the index j corresponds to the state
|n, l,m⟩, the index k corresponds to the state |n ′, l ′,m ′⟩, and |l,m⟩ are angular momentum states. These
matrix elements are the angular factors in the x and y components of the dipole transition elements, written
in angular-momentum representation, using x= r sinθ cosϕ and y= r sinθ sinϕ , where θ and ϕ are the
polar angle and the azimuthal angle, respectively. The radial integrals have been set to unity to emphasize the
generic character of the model. This means that, for example, the number a appearing in equation (3) is
a= ⟨0,0| sinθ cosϕ|1,−1⟩. The 1s state |1,0,0⟩ is taken as the initial state for the time evolution. As the
system is strongly perturbed by the applied laser fields, giving rise to large generalized Rabi frequencies that
substantially modify the dressed-state energies, the exact field-free energies of the states have limited
relevance for the laser-induced dynamics.

The orthogonally-polarized shaped laser fields [27] Ex and Ey encode the input data (pixel-drawn digits)
in the x-component and the program data in the y-component. Each digit image and each program consists
of 64 values. Essentially, we translate these values into the phases of 64 different frequencies, from which a
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pulse is composed. In detail, the encoding is implemented as follows. We start from a cos2-shaped spectral
amplitude

Ẽ(ω) = Ẽ0 cos
2

(
ω−ω0

Ω
π

)
, (5)

ω0 −Ω/2⩽ ω ⩽ ω0 +Ω/2, (6)

where ω is the frequency, the spectral range is Ω= π/32 a.u. and the central frequency ω0 corresponds to a
laser wavelength of 800 nm. The time-dependent field E(t) is then obtained as a Fourier-synthesis of 64
components, multiplied by an additional cos2 temporal envelope to restrict the pulse to a finite total
duration T, i.e.

E(t) = cos2 (tπ/T)
63∑
j=0

Ẽ
(
ωj

)
cos

(
−ωjt+φj

)
, (7)

−T/2⩽ t⩽ T/2 (8)

with

ωj = ω0 +( j− 31) ∆ω, ∆ω = 2π/T, (9)

T= 4096a.u., (10)

φj =−3vj rad. (11)

Here, vj (in the range 0⩽vj⩽1) are the 64 data values describing either the input or the program. In the case
of the input, vj are the pixel intensities of hand-written pixel-drawn digits from the scikit-learn python
package [28], 8× 8 pixel representation, processed column-wise from the lower right to the upper left
corner. Examples of this parameterization are shown in figure 2.

The TDSE is then solved numerically by a split-step operator approach [33–35] with a time step of 1 a.u.,
and the final state populations pi (‘output’) are read out for each pair of 100 input and 20 program fields.
Among the excited states, we select 10 classification states (namely, all dipole-accessible 4s, 4p, 4d, 4f states)
to represent the digits from ‘0’ to ‘9’. These energetically high-lying states would also be most easily accessible
and discernible for probing by single- or few-photon ionization in an experimental implementation. Because
not all classification states will be equally populated for an arbitrary set of pulses, we renormalize the final
populations of the classification states as Pj = pj/p0j (j = 0, . . . ,9), where p0j is obtained by applying a set of
random pc pulses and reading out their final state populations. This renormalization strategy makes the
scheme robust against the particular choice of quantum system. Any experimental implementation of the
scheme needs to be performed on an ensemble of atoms, in order to perform not just a single measurement
(determining the state |n, l,m⟩ of a single atom), but to obtain the ensemble average, i.e. the probabilities of
finding an atom in any of the target states. The classification state with the highest renormalized population
is then identified as the classification output between ‘0’ and ‘9’.

We assign to each program field a fitness F= 3N+ P with N the number of matches between the input
(pixel-drawn digit) and classification output (state with highest renormalized population). The term P is
included to reward those pulses leading to particularly high populations of the correct classification states:

P=
∑100

n=1P
(n)
j(n) is the sum over the renormalized populations P(n)j(n) for each of the 100 input fields of the

training set, with j(n) being the correct classification state for the nth input field. The program fields are then
iteratively optimized by an evolutionary algorithm [36] to maximize their fitness. The goal is to find an
optimal program field that guarantees correct classification of all training digits. The evolutionary algorithm
employed here to train the model atom uses a population size of 20 individuals, each represented by an array
of 64 numbers, which determine the spectral phase of the pc pulse in the same way as for the input pulses.
For each individual pc pulse its fitness is calculated by applying the pulse to 100 pixel-drawn digits from the
training set, as shown in figure 3. The best pc pulse is always kept for the next generation while the remaining
19 individuals are obtained by a combination of cross-over and mutation (using random numbers) of the
previous 64-number representations.

4



New J. Phys. 26 (2024) 093018 T Pfeifer et al

Figure 2. A sample of pixel-drawn digits and their encoding into electric fields (in arbitrary units) along one of the polarization
axes. The encoding is mathematically formulated in equation (7).

4. Results and conclusion

The results of three sample optimization runs are shown in figure 4. While the proportion of correctly
classified digits generally rises throughout the optimizations (black line), it is particularly interesting to
observe the correlated increase of the success rate on the test set (gray line). Since the 100-sample test set of
digits is unknown to the algorithm during training with the 100-sample training set, the increase in the
success rate on the test-set suggests that generalization is achieved in this approach, i.e. discrepancies
between different hand-written versions of the same digit do not prevent a correct classification. While 40%
success rate appears low for existing classical machine-learning models, this first proof of principle of an
optically trained atom still surpasses the 10% random-guessing result by a factor of 4.

In summary, we have introduced a novel concept of optically programmable learning using quantum
states for classification. As a proof of principle, the concept was applied to hand-written pixel-drawn digit
recognition, implemented with a few-level model of an atom and a straightforward encoding of input/data
and program/code by spectral phase functions of two orthogonally polarized femtosecond optical laser fields.
Once the optimal program pulse is known, the digit recognition code runs on the femtosecond time scale,
which is much faster than the processing time of any classical or quantum computer. The ultrafast time
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Figure 3. Scheme for the iterative optimization of the code. Each of the 20 individuals (represented by their 8× 8 numerical
codes) of one generation are put together with all 100 pixel-drawn digits of the training set and each individual’s fitness F is
obtained by the sum over all the single fitness values, F=

∑100
n=1 fn.

evolution minimizes the influence of environment-induced decoherence and makes the proposed scheme
robust. We note that replacing the atom by a larger quantum system, such as a complex molecule,
enormously increases the size of the Hilbert space while preserving the ultrafast time scale. We have chosen
the digit-recognition task as it is routinely used in conventional machine learning and we run it on a simple
quantum system for which the TDSE can be solved numerically. For more complex tasks implemented on
larger systems, the numerical solution of the TDSE becomes prohibitive so that the actual experiment
becomes the method of choice. In this study, we have achieved a recognition rate of 40% based on a very
limited training set and minimal computational resources. The following strategies to improve the
performance of the method are conceivable: (a) Parameterization of the data pulse: one could imagine a pixel
to pulse-shape mapping preserving the essential features of the pulse for a given digit upon translation
and/or scaling. (b) Parameterization of the code pulse: introducing more parameters into the spectral phase
function provides more flexibility in the code pulse. However, this increases the search space, which requires
more computing power. (c) More adapted/advanced optimization methods will reduce the training time and
lead to higher recognition rates by exploring the parameter space more comprehensively. (d) More
computational resources to implement all the above enhancements. Training refinements include much
larger training sets, higher dimensional code-parametrizations, more iterations, etc.

The key advantage of our approach is based on the versatility of possible applications using the same
quantum system as computational kernel. For example, future applications could include other
computational tasks, such as identifying letters, images, or prime numbers. In our approach, the quantum
system acts as an optically reprogrammable general-purpose quantum processor. While here we only
introduce and explore the key idea by means of a one-particle few-level model, future experimental
implementations will involve few- or many-body dynamics to employ a much larger state space and thus
higher effective number of coupled layers of states (neurons). A crucial point that distinguishes this scheme
from existing quantum-computing approaches and platforms is the fact that (entangling) operations are not
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Figure 4. Percentage of correctly recognized digits for three example runs of the evolutionary algorithm to optimize the program
fields for digit recognition. (a) Model with state-independent couplings a for all transitions, (b) model with state-dependent
couplings a ′ = a/(|n− n ′|+ 1), (c) model with modified state energies Enl =−2.16/(n+ 2)2. Black points: fittest individual
when applied to the training set. Grey points: fittest individual when applied to an (unseen) test set for validation of the
generalization of learning. Routinely, success rates of>40% and∼30% are achieved for training and test sets, respectively.

performed on spatially separated entities but on compact quantum systems of interacting particles. It is
therefore neither possible nor necessary to implement traditional quantum gates. Instead, suitably-shaped
structured light pulses are used to perform the operations required for the envisaged task. The use of
ultrafast polarization shaping to transfer the data and the code into an atomic-scale quantum system as well
as the execution within the system proceeds on femtosecond time scales, implying unprecedented speed
when compared to classical computers as well as quantum computers using trapped ions or superconducting
qubits. Therefore, this approach may lead to new scientific as well as technological applications, for example
in real-time classification. It has the potential to outpace other currently implemented machine-learning
approaches, including the fastest optical on-chip neuromorphic systems and optical accelerators, by orders of
magnitude. The experimental implementation of the scheme is possible using ultrafast polarization pulse
shaping to implement the id- and pc-pulses, and employing photoelectrons to map the final population of
classification states [37]. Multi-electron systems with larger Hilbert spaces, realized as multi-electron atoms,
molecules or solid-state samples provide additional computational resources, e.g. correlation and
entanglement. Therefore, these systems are expected to be even more effective for the presented ultrafast
laser-driven approach.

Our scheme can be viewed as a form of machine learning with a microscopic quantum system. Similar to
classical machine learning, there is not necessarily a simple explanation for how the trained machine makes
its decisions. Finding the optimal external program field to control the atom based on a cumulative reward
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(here: recognizing as many digits as possible) can be viewed as a reinforcement learning concept, providing
an exciting future avenue at the intersection of these research domains. Overall we expect that ultrafast AI on
the atomic scale has the potential to exploit quantum mechanics for high-speed computational tasks in the
future.
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