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Effects of the Coulomb potential in interference patterns of strong-field
holography with photoelectrons
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Using the semiclassical two-step model for strong-field ionization we investigate the interference structures
emerging in strong-field photoelectron holography, taking into account the Coulomb potential of the atomic core.
For every kind of the interference pattern predicted by the three-step model, we calculate the corresponding
structure in the presence of the Coulomb field, showing that the Coulomb potential modifies the interference
patterns significantly.
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I. INTRODUCTION

Development of techniques capable of tracing molecular
dynamics involves fundamental and technological problems
of great complexity that need to be solved. The reason is that
the dynamic imaging techniques are to operate at subangstrom
spatial scales with femtosecond time resolution. The contin-
uous progress in laser technologies, especially the advent of
the technology of pulse compression, as well as the advances
in the development of free-electron lasers, have given rise
to a variety of techniques aimed at time-resolved molecular
imaging. Among these are optical pump-probe spectroscopy,
time-resolved electron and x-ray diffraction, and ultrafast x-ray
spectroscopy (see Ref. [1] for recent review).

During the last three decades a breakthrough in laser
technology has been achieved: table-top intense femtosecond
laser systems operating at various wavelengths have become
available in many laboratories all over the world. This has led
to the emergence of such fields of research as strong-field, ul-
trafast, and attosecond physics (see Ref. [2] for review). It was
found that the interaction of intense laser radiation with atoms
and molecules leads to a plethora of highly nonlinear phe-
nomena. Among these are above-threshold ionization (ATI)
and the formation of the high-energy plateau in the electron
energy spectrum (high-order ATI), generation of high-order
harmonics (HHG), nonsequential double ionization (NSDI),
etc. (see Refs. [3–6] for recent reviews). The main theoretical
approaches used in strong-field physics are the direct numerical
solution of the time-dependent Schrödinger equation (TDSE)
(see, e.g., Refs. [7–9] and references therein), the strong-field
approximation (SFA) [10–12], and semiclassical models using
classical description of the electron after it has been promoted
to the continuum, typically by tunneling ionization [13–15].
The widely known semiclassical approaches are the two-step
[16–18] and the three-step models [19,20].

The studies of ATI have shown that the vast majority of
electrons reach the detector without recolliding with their
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parent ions. These electrons are referred to as direct ones
and they have energies below 2Up, where Up = F 2/4ω2 is
the ponderomotive energy (atomic units are used throughout
the paper unless indicated otherwise). There are also electrons
that are driven back to their parent ions and scatter off them
by angles close to 180◦. The high-energy plateau in the ATI
spectrum is created due to these rescattered electrons. The
rescattering scenario led to an understanding of the physical
mechanisms responsible for HHG and NSDI. The returning
electron can recombine with the parent ion and emit high-
order harmonics [20,21]. As an alternative, if this electron has
enough energy, it can release another electron from the atomic
ion (see Ref. [22] for review). These rescattering-induced
processes can be qualitatively described within the three-step
model. In the first step of this model an electron tunnels out
of an atom, and in the second step it moves along a classical
trajectory in the laser field only. The third step involves the
interaction of the returning electron with the parent ion.

Some of the phenomena mentioned here may be used for
the development of new ways of time-resolved molecular
imaging. Indeed, new ultrafast laser-based imaging techniques
have been proposed recently: laser-assisted electron diffraction
[23,24], laser-induced Coulomb explosion imaging [25–28],
laser induced electron diffraction [29–32], high-order har-
monic orbital tomography [33,34], and strong-field photoelec-
tron holography (SFPH) [35].

Using the full coherence of the electron motion after ioniza-
tion, the SFPH method puts into practice the idea of holography
[36]. It was shown in Ref. [35] that a photoelectron holographic
pattern can be clearly recorded in experiment. The hologram
is created by the interference between a reference (direct)
electron and a signal (rescattered) one. The SFPH method
of molecular imaging has several important advantages. First,
although free-electron lasers were used in some of the SFPH
experiments (see Refs. [35,37]), this method can be realized in
a table-top experiment. Second, the hologram that is recorded
in SFPH encodes temporal and spatial information not only
about the ion but about the recolliding electron as well. Last
but not least, attosecond time resolution can be achieved for
the photoelectron dynamics. Indeed, the signal and reference
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electronic wave packets that produce the holographic patterns
can be ionized in the same quarter cycle of the oscillating laser
field. As a result, subcycle time resolution can be achieved
even for long laser pulses.

For these reasons, the SFPH has been studied exten-
sively in the last few years, both experimentally (see, e.g.,
Refs. [38–42]) and theoretically [35,37–39,41,43–49]. Among
the theoretical approaches used to analyze the holographic
structures are the semiclassical model that accounts for the
laser field only [41,43–46], direct numerical solution of the
TDSE [35,38,39,41,43], the modified version of the SFA that
accounts for the rescattering [35,37], the Coulomb-corrected
strong-field approximation (CCSFA) [35,37], and the Coulomb
quantum orbit strong-field approximation (CQSFA) [48,49]
(see Ref. [50] for the foundations of the CQSFA method). The
holograms obtained from the solution of the TDSE agree with
the experimental data. This is particularly true for the spacing
between the side lobes (fringes) of the holographic structure
emerging when both the signal and reference electrons are
generated on the same quarter of cycle. However, it is difficult
to interpret the hologram from the solution of the TDSE.

The three-step semiclassical model was adapted for cal-
culation of the SFPH (see Refs. [43–46]). Different types of
subcycle interference structures were predicted by this model
[43]. Indeed, while the first studies of the SFPH considered
only the interference of the reference and signal waves that are
born in the same quarter cycle of the laser field, the signal and
reference electrons can also originate from different quarter
cycles, leading to different holographic patterns. Despite the
appealing physical picture of the SFPH provided by the three-
step model, it is well known that neglecting the Coulomb
potential is severe (see, e.g., Refs. [51–53]). Note that the same
is true for the modified version of the SFA. Furthermore, the
simulations of the SFPH within the three-step model were
performed assuming that the starting point of the classical
trajectory is independent of the field strength [43–46]. In
contrast to this, it is natural to assume that electrons tunnel
through a potential barrier with time-dependent width due to
the oscillations of the laser field. It is known that the proper
choice of the initial conditions for classical trajectories is
important [54,55].

The study of the electron trajectories calculated within the
CCSFA showed that the trajectories responsible for the emer-
gence of the interference structure can indeed be considered
as reference and scattered wave packets [35]. The CCSFA ap-
proach reproduces the shape of the interference fringes and the
spacing between them. Finally, the CCSFA simulations have
given important insight into the role of the Coulomb potential in
the SFPH [35,37]. The same is also true for the CQSFA theory
that has allowed for the identification and isolation of many
types of interference patterns in the photoelectron momentum
distributions. The distortion of different kinds of interfering
trajectories along with the change of the phase difference
between them due to the presence of the ionic potential were
studied in Ref. [49]. However, no direct comparison of the
interference structures predicted by the three-step model with
those calculated taking the Coulomb potential into account has
been made so far.

Moreover, not all the principal types of interference struc-
tures predicted by the three-step model were considered in

Refs. [35,37,49]. To the best of our knowledge, the effects of
the Coulomb potential in the interference structures emerging
due to the hard collisions of the signal electron with the
atomic core have not been analyzed so far. Recall that hard
collisions require small impact parameters and result in large
changes of electron momenta including backward scattering.
The interference of direct with backscattered electrons has
been proposed in Ref. [44] as a particularly sensitive probe
of the molecular structure. The holograms for H2 and N2

measured recently in Ref. [41] revealed a fishbonelike structure
that was claimed to originate from backward scattering.

In this paper we revisit the holographic interferences calcu-
lated using the three-step model, in order to (i) understand
how the time-dependent exit point affects the interference
patterns and (ii) obtain a benchmark for comparison with
the case when the Coulomb field is taken into account. We
then calculate all major types of interference structures in the
presence of the Coulomb potential, including those that involve
hard collisions of the signal electron (backward scattering).
Our analysis is based on the semiclassical two-step model
(SCTS) that describes quantum interference and accounts for
the Coulomb potential beyond the semiclassical perturbation
theory (see Ref. [56]).

The paper is organized as follows. In Sec. II we discuss
the three-step model and its application to the SFPH when the
starting point of the classical trajectories is time independent,
and when it depends on time. We formulate our approach to
calculation of the SFPH with the Coulomb field in Sec. III. In
Sec. IV we analyze formation of the interference structures in
the presence of the Coulomb potential. The conclusions of the
paper are given in Sec. V.

II. STRONG-FIELD PHOTOELECTRON HOLOGRAPHY
IN THE THREE-STEP MODEL

A. Application of the three-step model to strong-field
photoelectron holography

The application of the three-step model to the SFPH is
reported in Refs. [43–47]. Here we repeat the main points that
are important for the following discussion. For simplicity, and
in order to be consistent with Refs. [43–45], in this section
we consider only one cycle of a linearly polarized cosinelike
laser field: �F (t) = F0 cos (ωt)�ex between ωt = 0 and 2π . Here
�ex is the unit vector in the polarization direction, F0 is the
field strength, and ω is the frequency. Newton’s equation of
motion for an electron moving in this field can be easily
solved analytically. The velocity �v(t) and the position �r(t) of
an electron launched at time t0 are given by

�v(t) = {vx(t0) + pF sin (ωt0) − pF sin (ωt)}�ex

+ vy(t0)�ey + vz(t0)�ez, (1)

and

�r(t) =
{
x0(t) + F0

ω2
(ωt − ωt0) sin (ωt0)

+ F0

ω2
[cos (ωt) − cos (ωt0)]

}
�ex

+ vy(t0)(t − t0)�ey + vz(t0)(t − t0)�ez. (2)
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Here �v(t0) = vx(t0)�ex + vy(t0)�ey + vz(t0)�ez, �r(t0) = x(t0)�ex +
y(t0)�ey + z(t0)�ez, and pF = F0/ω. Due to the cylindrical
symmetry with respect to the polarization direction, we leave
out the z component of both �r(t) and �v(t) in what follows and
consider electron motion in two spatial dimensions.

We assume that the electron starts with zero initial velocity
along the laser field vx(t0) = 0, but its initial transverse velocity
vy(t0) ≡ v0,⊥ can be arbitrary. An electron starting with zero
initial transverse velocity at a time instant t

sig
0 within a certain

fraction of the laser period can return to the parent ion [i.e., to
the point (x = 0,y = 0)]. Upon its return this signal electron
is elastically scattered from the atomic core by an angle
θ0 (see, e.g., Ref. [57]). The scattering event is assumed to
be instantaneous, and the scattering angle θ0 is randomly
distributed between 0 and 360◦.

The time of return t1 of the signal electron can be found
from the equation

x
(
t

sig
0

) + F0

ω2

(
ωt1 − ωt

sig
0

)
sin

(
ωt

sig
0

)
+ F0

ω2

[
cos(ωt1) − cos

(
ωt

sig
0

)] = 0. (3)

Since the signal electron returns to the core with the velocity

V1 = −pF

[
sin(ωt1) − sin

(
ωt

sig
0

)]
, (4)

its velocity at time t > t1 is given by

�V (t) = [V1 cos θ0 + pF sin (ωt1) − pF sin (ωt)]�ex

+V1 sin θ0�ey. (5)

From Eq. (5) we obtain the asymptotic (final) momentum of
the signal electron:

�p = [V1 cos θ0 + pF sin (ωt1)]�ex + V1 sin θ0�ey. (6)

The asymptotic momentum of a reference electron starting at
time t ref

0 with initial transverse velocity v0,⊥ reads as

�p = pF sin
(
ωt ref

0

)�ex + v0,⊥�ey. (7)

For both signal and reference trajectories to lead to the same
final momentum �p = (px,py), their velocities at any time t >

t1 must be equal [43]. Indeed, from Eqs. (5) and (6) it follows
that for t > t1

�V (t) = [px − pF sin (ωt)]�ex + py �ey. (8)

The same expression is also valid for the reference electron
[cf. Eqs. (1) and (7)].

When the three-step model is applied to the SFPH, the phase
associated with an electron trajectory starting at time t0 is
determined by the classical action (see Refs. [43–47])S(t0,t) =∫ t

t0
(�v2(t ′)/2 + Ip)dt ′, where Ip is the ionization potential.

Therefore, the phases of the signal and reference electrons are
given by

Ssig(t) = 1

2

∫ t1

t
sig
0

v2
x(t ′)dt ′ + 1

2

∫ t

t1

[px − pF sin(ωt ′)]2dt ′

+ Ip

(
t − t

sig
0

) + p2
y

2
(t − t1) (9)

and

Sref(t) = 1

2

∫ t1

t ref
0

v2
x(t ′)dt ′ + 1

2

∫ t

t1

[px − pF sin(ωt ′)]2dt ′

+ Ip

(
t − t ref

0

) + p2
y

2

(
t − t ref

0

)
, (10)

respectively. Finally, the phase difference between the signal
and reference waves reads as (see Refs. [43–47])

�S = 1

2

∫ t1

t
sig
0

v2
x(t ′)dt ′ − 1

2

∫ t1

t ref
0

v2
x(t ′)dt ′

− Ip

(
t

sig
0 − t ref

0

) − p2
y

2

(
t1 − t ref

0

)
. (11)

In order to calculate the phase difference (11) at a given
final momentum �p, it is necessary to find the corresponding
values of t ref

0 , t
sig
0 , and t1. For |px | < pF the equation px =

pF sin (ωt ref
0 ) [see Eq. (7)] has two solutions in the range

0 � ωt ref
0 < 2π . For px � 0 we have ωt ref

0,1 = arcsin (px/pF )
and ωt ref

0,2 = π − arcsin (px/pF ). For negative px the solutions
are given by ωt ref

0,1 = π + arcsin (|px |/pF ) and ωt ref
0,2 = 2π −

arcsin (|px |/pF ).
Retrieving the corresponding t

sig
0 and t1 is more cumber-

some. It is worthwhile to solve Eq. (3) first, i.e., to find the
function t1 = t1(t sig

0 ) at every point of some grid for the time
of start t

sig
0 . For some values of ionization time Eq. (3) has

multiple solutions, which correspond to so-called late returns
of the ionized electron to the ion. Knowing t1 = t1(t sig

0 ) on some
grid we can calculate V1(t sig

0 ) on the same grid [see Eq. (4)].
Then the values of t1 and V1 at any intermediate point can be
found by interpolation. From Eqs. (4) and (8) it follows that{

px − pF sin
[
ωt1

(
t

sig
0

)]}2 + p2
y

= p2
F

{
sin

[
ωt1

(
t

sig
0

)] − sin
[
ωt

sig
0

]}2
. (12)

By solving this equation numerically we can find the time
of start t

sig
0 that leads to a given �p, and then evaluate the

corresponding values of t1(t sig
0 ) and V1(t sig

0 ,t1). Finally, Eq. (6)
allows us to determine the instantaneous scattering angle.

The algorithm described here is not the only possible
approach to calculation of interferometric structures. An alter-
native method treats t

sig
0 and θ0 as new independent variables.

For every time of start t
sig
0 the corresponding recollision time

is again found from Eq. (3). Then for any pair (t sig
0 ,θ0) the

asymptotic momentum can be found from Eq. (6). By doing
so for a sufficiently large number of trajectories specified by
t

sig
0 and θ0, we can obtain reliable statistics in the (px,py) plane.

Finally, these signal trajectories with the corresponding phases
are binned according to their asymptotic momenta in cells in
momentum space. After the phase of the reference electron
leading to a given cell is found, we can calculate the phase
difference �S associated with this cell.

Instead of dividing the (px,py) plane into cells, interpola-
tion on the nonuniform grid can be applied to find the value of
Ssig for any given momentum �p. However, for the laser-atom
parameters used in this paper, the results of such interpolation
converge slowly with increasing number of sets (t sig

0 ,θ0).
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FIG. 1. Asymptotic electron momentum components as functions
of the ionization time and the instantaneous scattering angle for the H
atom ionized by the first quarter of a cosinelike field with a wavelength
of 800 nm (Ti:sapphire laser) polarized along the x axis. The left
column, that is, panels (a) and (c), shows the px component. The
right column [panels (b) and (d)] shows the py component. Panels (a,
b) and (c, d) correspond to the intensities of 2.0 and 6.0×1014 W/cm2,
respectively.

Moreover, before convergence is achieved, the interferometric
structures calculated within this approach show some spurious
structures, which could be confused with the true interference
patterns. For this reason, we use bins on the (px,py) plane when
implementing the second approach with t

sig
0 and θ0 being the

independent variables. We have used both approaches to check
the consistency. The results obtained within both methods are
in agreement.

Four major different types of interference structures are usu-
ally discussed (see Ref. [43]). Two of these types correspond
to forward scattering of a signal electron, whereas two other
types involve its backward scattering. Nevertheless, in all these
four types the signal electron starts from the first quarter of the
laser period 0 � ωt0 � 90◦. Therefore, we start our analysis
with the kinematics of the signal electron launched in the first
quarter of the cycle.

B. Interference structures for the time-independent exit point

Let us first consider the simplest case that is usually assumed
when the three-step model is used to calculate holographic
interference patterns [43–46]: the tunnel exit is equal for all
ionization times and it is determined by the amplitude of the
laser field: x0 = Ip/F0. Figure 1 shows the asymptotic momen-
tum components of such a signal electron as functions of the
start time and instantaneous scattering angle for ionization of
the H atom at a wavelength of 800 nm and two laser intensities:
2×1014 and 6×1014 W/cm2. For most values of the scattering
angle θ0, the px component of the asymptotic momentum has
a minimum as a function of ωt0. This minimum (maximum of
the absolute value) is particularly pronounced for the backward
scattered electrons: 90 � θ0 � 270◦. Nevertheless, it may also
exist for forward scattered electrons, i.e., for 0 � θ0 < 90◦
(or 270 < θ0 � 360◦). The presence of this minimum implies
that for some values of the final momentum �p there are two

0 10 20 30 40 50 60 70 80 90
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1

ωt
0
 (deg)

p x (
a.

u.
)
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ωt
 0
 long ωt

 0
 short

FIG. 2. The px component of the asymptotic electron momentum
as a function of ionization time for the scattering angle θ0 = 180◦

(backward scattering). The parameters are as in Fig. 1. The blue (solid)
and green (dashed) curves correspond to the intensities of 2.0 and
6.0×1014 W/cm2, respectively.

different ionization times corresponding to this angle θ∗
0 [see

Fig. 2 where the cuts of Figs. 1(a) and 1(b) at θ0 = 180◦ are
shown]. These two ionization times correspond to different
electron trajectories. Depending on whether the signal electron
is ionized before the minimum or after it, we refer to the
corresponding trajectory as a long or short one. Therefore, it
is necessary to distinguish the interference structures created
by reference and long signal trajectories from those produced
by reference and short signal trajectories. This issue was also
discussed in Ref. [46].

The first and widely discussed type of the holographic
interference emerges when both reference and signal electrons
are launched in the first quarter of the optical cycle [see
Fig. 3(a)]. For brevity, we refer to this kind of interference
as type A. Usually it is also assumed that the signal electron
is scattered forward. The interference pattern of the second
kind [type B, Fig. 3(b)] is produced when the signal electron is
launched on the first quarter of the cycle, whereas the reference
electron is generated in the second quarter. The interference
structures [i.e., cos (�S), where �S is given by Eq. (11)]
of types A and B are shown in Figs. 3(c) and 3(d). For the
cosinelike field discussed here they emerge in the half plane
px > 0. In contrast to Refs. [43–46], we do not restrict our
consideration to forward scattered electrons only. Instead, we
allow for all instantaneous scattering angles θ0. The short and
long signal trajectories should be separated in calculations. The
averaging over the phase differences that correspond to the long
and short trajectories ending up at a given �p leads to the results
shown in Figs. 3(e) and 3(f): the false substructures are clearly
visible on the edges of the interference patterns. In contrast to
this, Figs. 3(c) and 3(d) were obtained by considering only the
long trajectories for the momenta at the edges of the structure.

When the reference electron is launched in the third quarter
of the cycle, we refer to the corresponding structure as interfer-
ence type C. In the case when the reference trajectory starts in
the fourth quarter, we classify the interference structure as type
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FIG. 3. Forward scattering holographic interference patterns cal-
culated within the three-step model for ionization of the H atom
by the laser field with a wavelength of 800 nm and intensity of
2.0×1014 W/cm2. Panels (a) and (b) illustrate formation of the
interferences of types A and B, respectively. Panels (c) and (d) present
the interference structure of types A and B, respectively. The same
structures calculated without separation of different forward scattered
signal trajectories leading to the same final momenta are shown in
panels (e) and (f), respectively.

D. In order to distinguish between the patterns created by long
and short signal trajectories, we add the word “long” or “short.”
Thus we consider the following types of holographic patterns:
C-long, C-short, D-long, and D-short [see Figs. 4(a), 4(b)
4(e), and 4(f), respectively]. The corresponding interference
structures calculated at the intensity of 2.0×1014 W/cm2 are
shown in Figs. 4(c), 4(d), 4(g), and 4(h). Note that, in contrast to
Refs. [43–46], when calculating the structures of types C-long
and D-long we do not restrict ourselves to backward scattered
electrons only, i.e., we assume 0 � θ0 � 360◦. However, only
the backward scattered electrons are taken into account in
calculations of the patterns of types C-short and D-short. This
is due to the fact that the interference of the short forward
scattered electrons with the reference ones results in a different
kind of interference structure emerging in a small part of the
(px,py) plane. This structure is outside of the scope of the
present paper.

Special attention must be given to the area of the (px,py)
plane in Figs. 4(d) and 4(h), where the interference structure
is absent. The vanishing of the interference structure occurs
due to the fact that not all the values of the px component
can be reached by short trajectories [see Figs. 1(a) and 1(b)].
This effect is particularly pronounced at lower intensities and
disappears with increasing field strength. Interference struc-
tures of all six types discussed here are shown in Fig. 5 at the
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FIG. 4. Backward scattering holographic interferences predicted
by the three-step model. Panels (a), (b), (e), and (f) show schematic
illustration of the structures of types C-long, C-short, D-long, and
D-short, respectively. Panels (c), (d), (g), and (h) present the corre-
sponding interference patterns. The parameters are as in Fig. 3.

higher intensity 6.0×1014 W/cm2. With increasing intensity
the interference stripes become narrower and their number
increases dramatically. At this higher intensity the holographic
structures of types C-short and D-short fill the half of the plane
−F0/ω < px < 0 completely.

C. Interferometric structures for the time-dependent exit point

Next, we analyze the interference structures calculated as-
suming that the starting point of the trajectory depends on time
x0(t) = −Ip/F (t). First, we recalculate px and py components
as functions of ωt

sig
0 and θ0 [see Figs. 6(a) and 6(b)]. The results

differ dramatically from the case of constant x0 [cf. Figs. 1(c)
and 1(d)]. Indeed, the function px = px(ωt0,θ0) has now two
minima. Accordingly, the py component has two maxima for
0 � θ0 � 180◦ and two minima for 180 � θ0 � 360◦. The
second extremum of px and py in the vicinity of ωt0 = 90◦
gives rise to another kind of interference structures. Here we
do not consider this second extremum and, therefore, account
only for the electrons launched at ωt0 � 67◦.

The corresponding interference patterns are shown in
Figs. 7(a)–7(f). It is seen that the structures of types A and
B occupy a larger area on the (px,py) plane compared to those
shown in Figs. 5(a) and 5(b). The caustics that are hardly
visible in Fig. 7(a) and better seen in Fig. 7(b) arise due to
the discontinuity of the ωt0(px,py) found from Eq. (3) for x0
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FIG. 5. Holographic interference patterns obtained from the
three-step model for ionization of H by a Ti:sapphire laser (800 nm)
at the intensity 6.0×1014 W/cm2. Panels (a), (b), (c), (d), (e), and
(f) show the interference structures of types A, B, C-long, C-short,
D-long, and D-short, respectively.

depending on t0. The time-dependent exit point leads to the
decrease of the area occupied by the interference structures
of types C-short and D-short [see Figs. 7(d) and 7(f)]. In this
respect, the account for the time dependence in the expression
for the exit point has a similar effect as the decrease of the laser
intensity. This result is expected, because the maximum value
F0 of the laser field F (t) was used when calculating Fig. 1 with
fixed x0.

III. CALCULATION OF THE HOLOGRAPHIC
INTERFERENCE PATTERNS WITH COULOMB

POTENTIAL

In order to calculate the holographic interference patterns in
the presence of the Coulomb field, we use an adapted version
of the SCTS model. Here we sketch the main points of our
approach focusing on the differences in the implementation
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FIG. 6. Same as Fig. 1 for the time-dependent exit point and
intensity 6.0×1014 W/cm2.
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FIG. 7. Same as Fig. 5 for the time-dependent exit point.

compared to Ref. [56]. As in any semiclassical approach, the
trajectory �r(t) and momentum �p(t) of an electron in the SCTS
model are calculated using Newton’s equation of motion:

d2�r
dt2

= − �F (t) − Z�r(t)

r3(t)
, (13)

where Z is the ionic charge (Z = 1 for the H atom). In our
simulations we solve Eq. (13) for the electrons launched on
the central period of the Ti:sapphire laser pulse (800 nm)
with the full duration of eight optical cycles. In order to
integrate Eq. (13), we need to specify initial conditions, i.e.,
the initial velocity and position. To this end, one could use
the separation of the static tunneling problem in parabolic
coordinates [13,58,59]. However, in the present paper we use
the simplest formula for the tunnel exit neglecting the Coulomb
potential: x0 = −Ip/F (t0) to allow for direct comparison with
the results of the three-step model.

We assume that the electron starts with zero initial velocity
along the laser polarization vx(t0) = 0 and nonzero initial
velocity v0,⊥ in the transverse direction. The SCTS considers
an ensemble of classical trajectories with different t0 and v0,⊥.
Since in this paper we are interested in the holographic inter-
ference structures rather than in calculation of the momentum
distributions, we disregard trajectory weights and distribute the
trajectories uniformly.

Following the SCTS model we associate every trajec-
tory with the phase of the semiclassical propagator (see
Refs. [60–62]). For the Coulomb potential this phase is given
by

�(t0,�v0) = −�v0 · �r(t0) + Ipt0 −
∫ ∞

t0

dt

{
p2(t)

2
− 2Z

r(t)

}
(14)
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FIG. 8. Interference pattern for intracycle interference obtained
(a) from the three-step model and (b) in the presence of the Coulomb
potential. The parameters are as in Fig. 5.

(see Ref. [56]). Once the asymptotic momenta of all the
trajectories in the ensemble are found, we bin them in cells in
momentum space. Finally, the amplitudes exp [i�(t j0 ,�vj

0 )] with
j = 1, . . . ,np associated with all np trajectories ending up in
a given bin located at �p = (px,py) can be added coherently.
However, it is easy to see that the quantity

Q =
∣∣∣∣∣∣

np∑
j=1

exp
[
i�

(
t
j

0 ,�vj

0

)]∣∣∣∣∣∣
2

, (15)

which is similar to the ionization probability calculated ac-
cording to the importance sampling implementation of the
SCTS model, is not sufficient to obtain the phase difference
between signal and reference electrons we are interested in.
Indeed, for calculation of interference patterns similar to those
shown in Figs. 3, 4, 5, and 7, we have to isolate only one
kind of rescattered and only one kind of direct trajectories.
In the presence of the Coulomb field this is not an easy task.
Nevertheless, this objective can be accomplished by careful
choice of initial conditions, i.e., of t0 and v0,⊥.

Once the necessary isolation of different kinds of trajecto-
ries is achieved, in any bin of the momentum space we have
N trajectories of one kind with phases �i

0 (i = 1, . . . ,N) and
M trajectories of another kind with phases �k

1 (k = 1, . . . ,M).
Then we calculate the average cosine of the phase difference
〈cos (�0 − �1)〉 in every bin of the momentum plane.

IV. STRONG-FIELD PHOTOELECTRON HOLOGRAPHY
WITH THE COULOMB POTENTIAL

We begin our analysis of effects of the Coulomb potential
with the intracycle interference, i.e., the interference of refer-
ence (direct) electrons starting from two different quarters of
the laser period (see, e.g., Refs. [63–66] and [43,49]). This type
of interference does not belong to the category of holography as
it does not require rescattering. For this reason it is not shown in
Figs. 3–5. The corresponding interference patterns produced
by the reference electrons launched on the first and on the
second quarter of the period calculated within the three-step
model and with the account for the Coulomb field are shown in
Figs. 8(a) and 8(b), respectively. It is apparent that the Coulomb
field creates characteristic kinks in the vicinity of py = 0. The
interference pattern of Fig. 8(b) is similar to the structures that
are seen in the momentum distributions calculated in Ref. [49].

To understand the formation of the interference patterns
in the presence of the Coulomb field, one must note that the
reference trajectories are considered to be those that pass the

core at large distances and undergo small-angle scattering,
whereas the signal trajectories are those that pass the parent
ion at small distances and undergo large-angle scattering
causing a sign change of the momentum in the y direction.
Therefore, it appears natural to consider the electrons obeying
the condition v0,⊥py � 0 as reference electrons and to use only
these when calculating the intracycle interference structure
shown in Fig. 8(b). However, this restriction is not sufficient
to calculate interference patterns properly. The reason is the
nontrivial dependence of the final electron momentum on the
initial conditions in the presence of the Coulomb field. Indeed,
the calculation of the py component as a function of t0 and
v0,⊥ shows that for each time of start t0 there is a smallest
positive initial transverse velocity v+

0,⊥(t0) [largest negative
v−

0,⊥(t0)] leading to py � 0 [py � 0]. This implies that py � 0
[py � 0] for any v0,⊥ > v+

0,⊥(t0) [v0,⊥ < v−
0,⊥(t0)]. Moreover,

for certain ranges of ionization time t0, the y component of
the final momentum is not a sign-constant function over the
intervals v−

0,⊥(t0) < v0,⊥ � v+
0,⊥(t0). As a result, some trajecto-

ries launched with 0 < v0,⊥ � v+
0,⊥(t0) [0 > v0,⊥ � v−

0,⊥(t0)]
are detected with py � 0 [py < 0]. These trajectories interfere
with those starting from another quarter of the cycle with
v0,⊥ > v+

0,⊥(t0) [v0,⊥ < v−
0,⊥(t0)] and, therefore, create an ad-

ditional interference pattern in some part of the (px,py) plane.
This pattern should not be mixed with the main one created
solely by the electrons with v0,⊥ > v+

0,⊥(t0) [v0,⊥ < v−
0,⊥(t0)].

Accordingly, from this point on we exclude the reference
trajectories not obeying the condition v0,⊥ > v+

0,⊥(t0) [v0,⊥ <

v−
0,⊥(t0)].

Another significant point is that the first quarter of the
laser cycle alone is no longer sufficient to produce the whole
interference pattern when the Coulomb field is taken into
account. The interference structure shown in Fig. 8(b) was
calculated by considering the range of ionization times ωt0
between −10 and 90◦. This shift of the left boundary compared
to the case of the three-step model is caused by the change of
the final electron momentum due to the Coulomb potential. The
magnitude of this shift can be easily estimated by treating the
Coulomb field as a perturbation. Its contribution to the asymp-
totic momentum is calculated by integrating the Coulomb
force along the trajectory governed by the laser field only
[53,67]. For not very large transverse velocities v0,⊥ <

√
2Ip

the corresponding integral can be evaluated analytically. As
a result, for the cosinelike field �F (t) = F0 cos (ωt)�ex the x

component of the final momentum �p can be estimated as
(see Ref. [67] for details)

px ≈ F0

ω
sin(ωt0) + π

F0 cos(ωt0)

(2Ip)3/2
. (16)

It is easy to see that Eq. (16) can be rewritten as

px ≈ F0

√
1

ω2
+ π2

(2Ip)3
cos(ωt0 − α), (17)

where

α = arctan

[
(2Ip)3/2

ωπ

]
. (18)
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The left edge of the intracycle interference structure in the
three-step model is located at px = 0 [see Fig. 3(a)], corre-
sponding to ωt0 = 0. In the presence of the Coulomb potential,
it follows from Eq. (17) that for px to be equal to zero
ωt0 = α + π

2 + πk, where k is an integer number. Therefore,
the ionization time closest to ωt0 = 0 that leads to px = 0 is
estimated as

ωt�0 ≈ −π

2
+ arctan

[
(2Ip)3/2

ωπ

]
= − arccot

[
(2Ip)3/2

ωπ

]
.

(19)

For the parameters of Fig. 8 this estimate yields ωt�0 = −10.2◦.
Note that Eq. (19) does not depend on the field strength.
More accurate expressions for the asymptotic momentum of
a direct electron moving in laser and Coulomb fields were
obtained recently [68,69]. Furthermore, analytical estimates
for the final momenta of different kinds of rescattered electrons
were also derived in Refs. [68,69]. However, the simple
formula (16) is sufficient to understand the formation of the
holographic interference patterns. Note that the vast majority
of the reference trajectories starting in the vicinity of ωt0 = π

2
are only weakly affected by the Coulomb field. For this reason,
we do not shift the right boundary of the first quarter (the left
boundary of the second quarter) of the cycle.

In the three-step model, the interference structure of type A
corresponds to the situation when both signal and reference
electrons are launched within the first quarter of the laser
period. In contrast to type A, the structure of type B is created
by the signal electrons launched on the first quarter of the cycle
and the reference trajectories starting on the second quarter.
When the Coulomb field is taken into account, the signal
trajectories must obey the condition v0,⊥py < 0. Furthermore,
the x component of the final momentum must be positive, since
the interference patterns of type A and B emerge in the half
plane px > 0. However, these conditions are not sufficient
to produce the proper interference pattern (similarly to the
case of the intracycle interference). The reason is that the
mapping from the (t0,v0,⊥) plane to the (px,py) plane is not
a one-to-one function in the domain where the condition for
the signal trajectories v0,⊥py < 0 is fulfilled. Different initial
conditions (t0,v0,⊥) can lead to the same final momentum �p.
As the result, several different interference patterns can emerge
in the same area of the (px,py) plane. These patterns must
be separated. Note that already in the three-step model it is
necessary to restrict the initial conditions in order to ensure
a one-to-one mapping to the final momentum and, hence, to
separate different interference patterns emerging for the same
final momenta �p. Within the three-step model this restriction is
achieved by considering different quarters of the optical cycle
(see Sec. II B).

In order to separate different interference patterns in the
presence of the Coulomb field, we identify the domains of
initial conditions, where the mapping (t0,v0,⊥) → (px,py) is
a one-to-one function. As a result, we find that interference
patterns similar to those obtained within the three-step model
also emerge when the Coulomb field is taken into account.
Figures 9(a) and 9(b) show the x and y components of the
final electron momentum as functions of t0 and v0,⊥ � 0,
respectively. The domain of the (t0,v0,⊥) plane that gives rise
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FIG. 9. Asymptotic electron momentum components as functions
of the ionization time and the initial transverse velocity calculated in
the presence of the Coulomb potential. The parameters are as in Fig. 5.
Panels (a) and (c) show the px component. Panels (b) and (d) display
the py component. The blue (dashed) curves in panels (a) and (b)
show the boundary of the domain that gives rise to the signal electrons
responsible for the lower half (py < 0) of the interference patterns of
types A and B. The letters “L” and “R” in panels (c) and (d) mark
the domains responsible for the long and short signal trajectories,
respectively. The boundaries of these domains are indicated by blue
(dashed) curves.

to the relevant interference patterns similar to the one predicted
by the three-step model is shown by the blue (dashed) curves in
Figs. 9(a) and 9(b). The corresponding interference patterns of
types A and B at the intensity of 6.0×1014 W/cm2 are shown
Figs. 10(a) and 10(b). It is apparent that the Coulomb potential
changes the interference structure substantially. This is true for
the positions of the interference maxima and minima, as well
as for their spacing. For type B the interference stripes show
kinks at py = 0, similar as in intracycle interference, Fig. 8(b),
but pointing in the opposite direction.

To obtain the interference structures of types C and D, we
calculate the interference of the signal electrons with v0,⊥py <

0 starting from the first quarter with the reference electrons
starting from the third or the fourth quarter of the cycle. The
interference patterns of types C and D correspond to negat-
ive px .

The x and y components of the final electron momentum
as functions of ωt0 ∈ [−10◦,90◦] and small positive v0,⊥ are
shown in Figs. 9(c) and 9(d). It is seen that both px and
py components have two pronounced minima as in the case
of the electron motion in the laser field only. The second
minimum close to ωt0 = 90◦ is due to the time-dependent
exit point [see Fig. 6]. Here we again consider only the left
minimum of px and py . The position of this minimum weakly
depends on the initial transverse velocity. For the parameters
considered the minimum is achieved at ωt0 ≈ 18.3◦. Thus,
by analogy with the electron kinematics within the three-step
model, we can again distinguish between long and short
signal trajectories. The corresponding domains on the (t0,v0,⊥)
plane are marked in Figs. 9(c) and 9(d) by the letters “L”
and “R”, respectively. The boundaries of these domains are
shown by blue (dashed) curves. With signal trajectories from
these domains, we calculate interferences of types C-long,
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FIG. 10. Holographic interference patterns of types A (a), B (b),
C-long (c), C-short (d), D-long (e), and D-short (f) in the presence of
the Coulomb potential. The parameters are as in Fig. 5.

C-short, D-long, and D-short. As for the reference electrons,
we proceed similarly to the cases of the intracycle interference
and types A and B. Note that we shift the left boundary of
the third quarter of the cycle by 10.2◦ to earlier times when
calculating the structure of type C. The results are presented in
Figs. 10(c)–10(f). The patterns shown here should be compared
with those presented in Figs. 7(c)–7(f). It is seen that the
Coulomb potential has three main effects on the interference
patterns. First, it shifts the interference pattern as a whole.
Second, it fills the parts of the interference structures that
are absent when the Coulomb field is neglected. Third, the
presence of the Coulomb potential results in the characteristic
kinks of the interference stripes at py = 0. We attribute these
kinks to the Coulomb focusing effect (see Ref. [70]).

Finally, we have checked the sensitivity of the results to
changes in the exit point. To this end, we have recalculated
the results shown using the expression for the tunnel exit that
results from the separation of the time-independent
Schrödinger equation in parabolic coordinates. For the

parameters under investigation, the corresponding interference
structures are almost identical to those presented here.

V. CONCLUSIONS

In conclusion, we have investigated subcycle interference
structures emerging in strong-field photoelectron holography
using semiclassical approaches. First, we have calculated these
structures within the three-step model. Following Ref. [43] we
assumed initially that all classical electron trajectories start at
the same point, which is determined as the tunnel exit at the
maximum of the field. We found it important to distinguish be-
tween long and short rescattered trajectories when calculating
the interference structures involving backscattering. This is in
agreement with the conclusion of Ref. [46].

We have found that the interference structures change sig-
nificantly when the time dependence of the tunnel exit is taken
into account. Specifically, some interference patterns expand,
whereas others may shrink compared to those calculated with
the time-independent exit point. This is due to the substantial
change in kinematics of the signal electron.

In order to calculate the interference patterns in the presence
of the Coulomb potential, we have developed a computa-
tional approach based on the SCTS model, which describes
quantum interference including the Coulomb potential beyond
the semiclassical perturbation theory. We have identified the
specific groups of trajectories responsible for each kind of
holographic structure. Finally, for every type of interference
structure predicted by the three-step model we have presented
its counterpart emerging in the presence of the Coulomb poten-
tial. In addition to changing the positions and the widths of the
interference stripes, the Coulomb potential can manifest itself
in three other effects. These are the shift of the interference
pattern as a whole, the filling of the parts of the interference
structure that are missing when the Coulomb potential is
neglected, and the characteristic kink of the interference stripes
at zero transverse momentum. In measurable momentum
distributions, several of the interference structures will usually
be overlaid on top of each other. Furthermore, it remains to be
studied which of the holographic structures are less vulnerable
to focal averaging and thus more visible under experimental
observation. Therefore, future work is needed to shed light on
the question of which of the Coulomb effects are observable
in momentum distributions.
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