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When an atom is ionized by a strong laser pulse, the field can drive the released electron back to the
parent ion and trigger the emission of a high-order harmonic photon with a frequency that is a function of
the time of ionization. The attractive Coulomb potential causes a slowdown of the outgoing electron that must be
compensated by an earlier release into the accelerating field to produce the same harmonic frequency as without
the Coulomb force. By numerical solution of the time-dependent Schrödinger equation for a helium model atom,
we demonstrate that such a subtle time shift of about 35 attoseconds is measurable by streaking with a weak,
orthogonally polarized field combined with a complex-time trajectory interpretation. A comparison of results for
high and low streaking frequency shows that only the high-frequency method measures the Coulomb shift well.
This is confirmed by a classical trajectory model and by the analytical R-matrix theory.
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The general aim of ultrafast science is the observation
and control of ever faster time-dependent processes. In recent
years, progress in this direction has mainly been made by
means of light-based approaches. The shortest durations that
have been accessed with photons are in the attosecond range
and below. For example, the travel time of a high-energy pho-
ton between the two protons in hydrogen has been measured
to be 247 zeptoseconds [1], the shortest light pulses created to
date are around 50 attoseconds long [2,3], the relative phase
between a light wave and its envelope has been controlled with
12 attoseconds precision [4], and the pulse-to-pulse delay in
a pulse pair produced with polarization pulse shapers has an
accuracy of 300 zeptoseconds [5].

Time measurements in attosecond physics rely heavily
on streaking methods using the response of electrons to
well-controlled moderately intense pulses. For example, the
characterization of isolated attosecond light pulses, see above,
uses streaking of the photoelectron that is released upon ion-
ization by the attosecond pulse [6]. Similar methods are used
for attosecond pulse trains [7,8]. In angular streaking [9–11],
tunnel ionization is probed by the same field that frees the
electron and the aim is to extract the electron’s most probable
birth time from photoelectron momentum distributions.

Furthermore, there is an analog of streaking in high-order
harmonic generation (HHG). HHG denotes the process that
after ionization of an atom, the laser-driven electron returns
back to the initial bound state under emission of a high-
frequency photon. The excursion of the electron is nearly
classical and hence HHG can be modeled in terms of tra-
jectories [12,13]. This mechanism of HHG, consisting of
ionization, excursion, and recombination, is known as three-
step model, and it is at the borderline of classical and quantum
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mechanics. Its quantum-mechanical formulation is given by
the strong-field approximation (SFA) and the quantum-orbit
(QO) model [14,15], where complex times are assigned to
ionization and return. A streaking-type measurement of the
ionization time in HHG is possible with orthogonally polar-
ized two-color (OTC) fields [16,17]: a fundamental strong
field with frequency ω is the driving field for HHG and a
weak probe field with frequency 2ω polarized in the per-
pendicular direction serves to measure the ionization time
for each generated harmonic frequency by perturbing the
electron trajectory in the lateral direction. The harmonic in-
tensity and electron return angle are measurable quantities
depending on the relative phase between the two colors,
facilitating the extraction of both the ionization and return
times. Controlling the lateral electron dynamics by OTC fields
has proven useful also for the probing and control of pho-
toelectron emission [18–24] and for trajectory selection in
HHG [25].

Streaking comes with the challenge of modeling the elec-
tron dynamics in the target system in the presence of both
the external field and the electron-core Coulomb interaction.
Thus, although a streaking measurement can, in principle,
provide few-attosecond time resolution, the accurate retrieval
of an electron birth time relies on a suitable model. In the con-
text of HHG, the time retrieval has been based on Newtonian
trajectories without the Coulomb force in the probe-field di-
rection. Hence an important question is whether the ionization
time extracted from the pioneering measurement [16] reflects
the theoretically predicted Coulomb-induced time shift [26].
Intuitively speaking, this shift arises because the outgoing
electron is slowed down by the Coulomb attraction (in the
fundamental field direction), which must be compensated by
an earlier release into the field.

In this Letter, we employ numerical solutions of the time-
dependent Schrödinger equation (TDSE) to investigate the
OTC scheme over a wide range of probe frequencies (with
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wavelengths reaching from 160 nm to 1600 nm). We find
that high frequencies are superior in the sense that the true
Coulomb-modified ionization time can be extracted by means
of a straightforward analysis that does not require the ex-
plicit treatment of Coulomb forces in the retrieval method.
By contrast, in the original ω–2ω scheme with 400 nm probe
wavelength [16,17], the Coulomb shift is essentially invisible.
Our conclusions are corroborated by comparison of various
different classical and quantum-mechanical models.

We solve the TDSE for a two-dimensional single-active
electron helium model atom, using the Crank-Nicolson
method [27,28] with a time step of 0.05 a.u. on a box with size
260 × 100 a.u. and 2600 × 1000 grid points. The Hamiltonian
reads (Hartree atomic units are used unless otherwise stated)

Ĥ = − 1
2∇2 + V (r) + r · E(t ). (1)

The soft-core potential V (r) = −1/
√

r2 + 0.0684 reproduces
the ionization potential Ip = 0.904 a.u. of helium. The electric
field E(t ) = −Ȧ(t ) of the OTC pulse with components Ex, Ey

follows from

A(t ) = −E0

ω
f (t )

(
sin(ωt )êx + ε

n
sin(nωt + φ)êy

)
, (2)

with unit vectors êx and êy. Here, E0 and ω = 2π/T are
the peak field strength and the frequency of the fundamental
laser pulse. The simulations are carried out for two funda-
mental laser wavelengths, namely 800 nm (with intensity
4.0 × 1014 W/cm2) and 1200 nm (with intensity 3.51 ×
1014 W/cm2). The two-color delay φ quantifies the phase
relation between the streaking field with frequency nω and
the fundamental field, and the relative amplitude is ε = 0.02.
In the TDSE simulations, the envelope f (t ) covers the range
[−T, 2T ] and it consists of one-cycle edges and a one-cycle
flat top. To suppress HHG contributions from the edges, they
are chosen as [cos(ωt/4)]6 for the leading edge and symmet-
rically for the trailing edge. This very short envelope allows
us to consider not only integer, but arbitrary n > 0, while an
experimental realization will probably use multicycle pulses
and integer n. In each time step, the wave function is mul-
tiplied with a cos1/8-shaped mask to avoid reflections from
the boundary. The masks start at |x| = 1.1E0/ω

2 for the x
direction and at |y| = 40 a.u. for the y direction.

From the TDSE wave function, the dipole acceleration
a(t ) = −∂2

t 〈r〉 with components ax(t ) and ay(t ) is computed
via the Ehrenfest theorem. In general, more than one tra-
jectory contributes to the generation of one harmonic order
[14,15,29], i.e., there are several pairs of ionization and re-
combination times. In particular, in each optical cycle there
is a short and a long trajectory. Experimentally, the short
trajectory can be selected by macroscopic phase matching
[30]. To select a single short trajectory in the flat-top part of
the pulse from the TDSE calculations, we resort to the Gabor
time-frequency distribution [17,31]

IG(�, t ) = IGx(�, t ) + IGy(�, t )

=
∑
j=x,y

∣∣∣∣
∫

dt ′a j (t
′)e−(t ′−t )2

/(2σ 2 )+i�t ′
∣∣∣∣
2

, (3)

with σ = 1/(3ω). Here, the total signal IG(�, t ) is the sum
of the intensities polarized along the x and y axes. For a
given harmonic frequency �, the local maximum of the
time-dependent Gabor intensity corresponding to the short
trajectory is found at an emission time te, which depends on
� and lies between 0.3 T and 0.7 T . The value of IG at the
time te is used as the frequency-dependent harmonic signal for
the further analysis. In this spirit, the two crucial φ-dependent
observables within the streaking scheme are the harmonic
intensity IG(�, te) and the amplitude ratio R of the compo-
nents polarized along y and x, R(�) = √

IGy(�, te)/IGx(�, te).
These two observables were previously used to deduce the
ionization time ti and recombination time tr for each harmonic
order [16,17]. The idea is that the two times are dictated by
the fundamental field only, since the probe field is weak, but
the two observables depend on the probe field as follows.
HHG is possible only if the transverse displacement of the
electron between ionization and recollision is zero, so that the
returning electron hits the parent ion, i.e., y(tr ) − y(ti ) = 0,
where y(t ) is the transverse electron coordinate. To satisfy
this condition for a Coulomb-free Newtonian trajectory, it is
necessary that the initial lateral velocity of the electron is

vy0 = −εE0

nω

[
sin(ϕi ) + cos(ϕr ) − cos(ϕi )

nω(tr − ti )

]
, (4)

where we define ϕi = nωti + φ and ϕr = nωtr + φ. It is
known [32,33] that ionization and thus HHG is strongest
for zero initial lateral velocity. Since we use complex-time
trajectories, this condition reads [17,34]

Re vy0 = 0. (5)

Hence Eqs. (4) and (5) quantify how the optimal phase φ̄

that maximizes the harmonic signal is related to the complex
ionization and recombination times. For linearly polarized
harmonics and initial states with spherical symmetry, the y-to-
x amplitude ratio R is related to the polarization angle of the
harmonics relative to the x direction and hence to the return
angle of the electron. In the experiment [16], R was measured
by the amplitude ratio of the adjacent even and odd harmonics
because, in an ω–2ω OTC field, even harmonics are polarized
along y and odd harmonics are polarized along x. In analogy to
Eq. (4), the trajectory model can be used to express R in terms
of ti, tr , ϕ; see Refs. [16,17] for details. From those works,
it is known that the probe-induced variation of the harmonic
intensity depends predominantly on the ionization time, while
the variation of the amplitude ratio depends predominantly on
the return time.

Figure 1 shows the harmonic intensity (left column) and
the amplitude ratio (right column) from the numerical solution
of the TDSE as functions of harmonic order and two-color
delay for ω–2ω (upper row) and ω–4.3ω (bottom row) fields.
For each harmonic order, we find the optimal phases that max-
imize the observables, shown as orange dashed-dotted lines.
For comparison, the white lines represent the optimal phases
obtained from a simple implementation of the SFA: the har-
monic intensity is Is(�) = |exp[i(�tr − Sv )]|2 with the action
Sv = ∫ tr

ti
dt[v2(t )/2 + Ip]. Here, the velocity v with compo-

nents vx, vy takes the form v(t ) = p(ti, tr ) + A(t ) and the
saddle-point momentum is p(ti, tr ) = −1/(tr − ti )

∫ tr
ti

A(t )dt .
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FIG. 1. Color density plots showing results from the numerical
solution of the TDSE as a function of harmonic order and two-color
delay: (a),(c) normalized harmonic signal and (b),(d) y-to-x ampli-
tude ratio R of harmonics. The streaking frequency is 2ω (4.3ω) in
the upper (lower) panels, where ω refers to the fundamental 800 nm
pulse. The optimal phases maximizing the observables are shown by
white solid curves (SFA) and orange dashed-dotted curves (TDSE).

The complex times ti = t0
i + i Imti and tr = t0

r + i Imtr are
solutions of the saddle-point equations of the QO model [15]
(neglecting the field in y direction)

v2
x (ti )/2 = −Ip, v2

x (tr )/2 = � − Ip. (6)

In the ω–2ω case, the optimal phases of TDSE agree excel-
lently with the SFA model [see Figs. 1(a) and 1(b)], despite the
lack of Coulomb effects in the SFA model and in agreement
with earlier research results [17]. In the ω–4.3ω case, the
optimal phases for the amplitude ratio are still very similar in
TDSE and SFA [Fig. 1(d)]. However, a distinct shift appears
in the optimal phases for the harmonic yield [Fig. 1(c)]. Does
this phase shift reflect the Coulomb-induced ionization-time
shift? We unveil the physics behind this phenomenon next.

To simplify the analysis, we make two assumptions. First,
we perform the ionization-time retrieval from the harmonic
yield only, while assuming that the return time is given by the
QO model. We have numerically confirmed that this assump-
tion has negligible effect on the resulting ionization times.
This is consistent with (i) the finding of the analytical R-
matrix (ARM) method [26] that the return time is less affected
by the Coulomb potential than the ionization time, (ii) the
observation that Coulomb focusing plays an insignificant role
in the polarization angle for short trajectories [35], and (iii)
the small deviation of the amplitude ratio from the QO model
in Figs. 1(b) and 1(d). The imaginary part of the return time
is small and it is neglected [17,36]. Second, we assume that
the imaginary part of ti equals the Keldysh tunneling time,
Imti = √

2Ip/|Ex(t0
i )| [37]. Thus the real part t0

i is retrieved
via Eqs. (4) and (5) in combination with the optimal phases
obtained for the harmonic intensity from the numerical solu-
tion of the TDSE.

The results obtained for various streaking frequencies nω

are shown in Fig. 2(a). In the low-frequency domain (n � 2),
the retrieved times agree with the QO times, which do not

FIG. 2. (a) Ionization times retrieved from TDSE with vari-
ous streaking frequencies for 800 nm. (b),(c) Representative TDSE
results for low-frequency and high-frequency streaking using fun-
damental wavelengths (b) 800 nm and (c) 1200 nm, together with
ionization times from the adiabatic correction (black line), CM (red
dashed line), ARM theory (green dashed-dotted line), and simple
man’s model, i.e., QO model with Ip = 0 (thick dashed light-gray
line). Thick solid gray lines in (a),(b),(c) show the real parts of the
QO model times. The field intensities are (a),(b) 4.0 × 1014 W/cm2

and (c) 3.51 × 1014 W/cm2.

include Coulomb effects. In the high-frequency domain (n �
3), there is a shift to earlier times.

To interpret these results, we calculate the Coulomb-
corrected ionization time in the absence of the probe field
using three different models. (i) Adiabatic correction: imme-
diately after ionization, the attractive Coulomb force slows
down the outgoing electron. Approximating the ionizing
field Ex(t0

i ) as static, the resulting velocity change is ve
0 =

πEx(t0
i )/(2Ip)3/2 [38]. To produce the same return energy as

without the Coulomb potential, the electron must be released
earlier to receive more laser-induced acceleration, changing
the ionization time (relative to the QO time) by

δt0
i = − π

(2Ip)3/2
. (7)

(ii) Classical model (CM): the electron trajectory r(t ) is
dictated by Newton’s equation r̈(t )=−E(t )−∂rV (r(t )) with
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initial conditions based on the SFA, i.e., ṙ(t0
i ) = Re[p(ti, tr ) +

A(t0
i )] and r(t0

i ) = Re(
∫ t0

i
ti

[p(ti, tr ) + A(t )]dt ). The classical
recombination time t ′

r corresponding to these initial conditions
is defined by r(t ′

r ) = 0. The total (kinetic and potential) energy
of the electron at t ′

r determines the radiated photon energy

�′(t0
i , t ′

r

) = Ip + ṙ2(t ′
r )/2 + V (r(t ′

r )). (8)

This provides the desired mapping from harmonic frequencies
�′ to ionization times t0

i . (iii) ARM [26,39,40]: a Coulomb
term Sc is added to the SFA action to treat the first-order effect
of the electron-core interaction Uc(r) = −1/

√
r2 in HHG. In

detail,

Sc =
∫ t f

tk

dt U (ra(t )), (9)

where ra(t ) = ∫ t
ti

[p(ti, tr )+A(t ′)]dt ′ is the potential-free
trajectory. The lower integration limit is tk = ti − i/(2Ip)
and the upper limit t f is determined by the return
condition

√
ra(t f )2 = exp[2(0.5772 − ξ )]/(2vr ) with ξ =∑∞

p=1{1 − vr p arctan[1/(vr p)]}/p and the return velocity

vr = √
2(� − Ip). Expanding the saddle-point times yields

the first-order time shifts [26]

�t0
i = −∂ ReSc

∂Ip
− ∂ ReSc

∂�
, �t0

r = −∂ ReSc

∂�
. (10)

The integration contour in Eq. (9) is chosen as tk → Re tk →
Re t f → t f , which does not cross branch cuts [26,41]. In prac-
tice, �t0

i and �t0
r are found by calculating Sc for closely lying

values of Ip and �.
The Coulomb-corrected ionization times are shown in

Fig. 2(b) for the wavelength 800 nm at the intensity 4.0 ×
1014 W/cm2. Similar results are obtained for the wavelength
1200 nm at the intensity 3.51 × 1014 W/cm2; see Fig. 2(c).
The adiabatic correction, CM, and ARM theory agree well
with each other and they exhibit an amazing consistency with
the times retrieved from the TDSE two-color scheme with
high streaking frequency. Apparently, the Coulomb shifts can
be accurately measured by an appropriate choice of the streak-
ing frequency. We also note that the good performance of the
adiabatic correction, Eq. (7), suggests that the physical picture
of a Coulomb-induced slowdown after ionization is adequate.

To consolidate the physical picture, we extend the CM
and ARM methods to the full OTC field. Here, the aim is
to set up approximate theories as an alternative to TDSE to
obtain optimal phases from which the ionization time can be
retrieved. In the CM, the optimal phase φ̄ is defined such
that the transverse trajectory returns to zero at t ′

r , i.e., y(t ′
r ) =

0. To satisfy Eq. (5), the lateral initial condition ẏ(t0
i ) =

Re[Ay(t0
i ) − Ay(ti )] is used. Here, Ay is the y component of

A. In ARM, the optimal phase is found by maximizing the
harmonic intensity

Ia = |exp[i�t ′′
r − iSv (t ′′

i , t ′′
r ) − iSc(t ′′

i , t ′′
r )]|2. (11)

Here, the saddle-point times t ′′
i , t ′′

r for the OTC field (not just
the fundamental field) are used because of the sensitivity of
the Coulomb term to the times. From the optimal phase of
CM and ARM, we retrieve the ionization times using the
same procedure as from the TDSE optimal phase. For the

FIG. 3. Retrieved ionization times versus streaking frequency for
harmonic orders (a) 43 and (b) 53 in HHG with the fundamental
wavelength 800 nm. The horizontal lines show reference times with-
out streaking: QO (gray solid lines), CM (red dashed-dotted lines),
and ARM (green dashed-dotted lines). Black dotted lines show the
two-color CM without lateral Coulomb force.

fundamental wavelength 800 nm, Fig. 3 shows these times
as a function of the streaking frequency nω for two har-
monic orders. Even though TDSE, CM, and ARM differ in
the details, we find that they all produce a double-plateau
structure with a smooth transition from the low-frequency to
the high-frequency regime. In the first plateau, the retrieved
ionization time agrees with the QO time, as if no Coulomb
interaction was present. This is reminiscent of the absence
of a Coulomb shift when orthogonal streaking was applied
to the bicircular attoclock [42], where high effective probe
frequencies were not studied. The second plateau, however,
matches the Coulomb-corrected times.

In a modified CM where we neglect the Coulomb force
along the y axis, the retrieved ionization time is almost in-
dependent of the streaking frequency and it agrees with the
TDSE high-frequency plateau (see the dotted line in Fig. 3),
indicating that Coulomb effects in the probe direction are
responsible for the error of the OTC method at low frequency.

Our work is relevant for experiment as it indicates that
short probe wavelengths such as 200 nm (corresponding to 4ω

for an 800 nm fundamental field) are superior in measuring
times with attosecond precision. For none of the investigated
fundamental wavelengths is the probe wavelength 400 nm
short enough for precisely measuring the ionization time via
the Coulomb-free scheme. We have found that these conclu-
sions are independent of the probe field strength as long as
ε � 0.1. We believe that the transition frequency between the
low- and high-frequency streaking regimes is related to the
Keldysh time τK = √

2Ip/|Ex| of the ionizing field because
the Coulomb-free Eq. (4) acquires large values due to the

L041103-4



REVEALING COULOMB TIME SHIFTS IN HIGH-ORDER … PHYSICAL REVIEW A 105, L041103 (2022)

imaginary part of nωti in the regime nωτK 	 1 so that it
can dominate over Coulomb effects. We have numerically
confirmed that, for high streaking frequency, including an ap-
proximate Coulomb term in Eq. (4) causes negligible changes.

To our knowledge, 800 nm–200 nm OTC HHG, which has
the additional benefit of y-polarized even harmonics (as in the
ω–2ω case), has not been implemented yet. But other non-
standard probe wavelengths have already attracted attention
[43–45], showing the feasibility of streaking at various wave-
lengths. The absolute two-color delay is usually unknown in
experiment. To this end, the y-to-x amplitude ratio provides a
useful gauge for the two-color delay as it is well predicted by
SFA theory; see Figs. 1(b) and 1(d).

In summary, we have investigated the frequency depen-
dence of two-color HHG for the measurement of ionization

times on the attosecond time scale. Our results indicate that
high streaking frequencies are well suited for resolving tiny
time shifts caused by the electron-core interaction. In the
future, this approach can facilitate the attosecond-scale in-
vestigation of orientation-dependent strong-field ionization of
molecules.
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by the China Scholarship Council, the Deutsche Forschungs-
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