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Observing the Coulomb shifts of ionization times in high-order harmonic generation
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The Coulomb interaction between the active electron and the parent ion is inherent in high-order harmonic
generation from laser-driven atoms, but it is often neglected in modeling the electron dynamics. For this reason,
the pioneering measurement scheme based on orthogonally polarized two-color fields [reported in Nature
(London) 485, 343 (2012)], which is able to measure ionization and return times for the electron trajectories,
does not reflect the time shifts caused by the Coulomb interaction. We introduce a simple Coulomb correction
to the electron motion in the two-color scheme, leading to modified retrieval equations for the extraction of time
information from the observables. We apply the modified equations to data calculated from simulations of the
time-dependent Schrödinger equation and we show that the scheme effectively reveals the Coulomb shift of the
ionization time.
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I. INTRODUCTION

Resolving ultrafast dynamics of the microworld on its nat-
ural timescale is the aim of ultrafast detection. Thanks to
the development of strong-field physics in recent decades,
ultrafast detection has broken through the femtosecond limit,
thus opening the door to attosecond science [1]. High-order
harmonic generation (HHG), which stands for the nonlinear
and nonperturbative response to strong fields, causes emission
of radiation that carries information on ultrafast dynamics and
hence it has numerous applications for probing the dynamics
in atoms, molecules, and solids [2–8]. The classical physical
picture of the HHG process is described by the three-step
model [9,10] consisting of ionization, followed by accelera-
tion and return of the electron, which then recombines with the
parent ion. The quantum-mechanical version of the three-step
model is known as the strong-field approximation (SFA) or
Lewenstein model [11]. Its formulation in terms of complex-
valued electron trajectories is known as the quantum-orbit
(QO) model [12].

The measurement of the times of ionization and return
(recombination) is an important topic in HHG. It deepens
our understanding of the mechanism of HHG in terms of tra-
jectories, but it also has practical implications. For example,
the understanding of spectral caustics requires the accurate
knowledge of electron trajectories [13–15]. More generally,
the time structure of the trajectories is needed for the applica-
tion of high-order harmonic spectroscopy (HHS) to dynamical
problems. HHS refers to the extraction of static and dynam-
ical properties of atoms, molecules, and condensed phases
from the HHG signal. For example, trajectory-resolved HHS
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can be used to investigate the motion of nuclei in molecules
[4,16,17], dynamical symmetries [6,18], and the evolution of
electronic wave packets under the tunneling barrier [19,20].
The accuracy of these measurements depends on well-defined
ionization and return times.

Orthogonally polarized two-color (OTC) fields are fre-
quently applied for manipulating electron trajectories or wave
packets [21–25]. They provide a method to retrieve both
ionization and return times in HHG [26]: A weak second-
order harmonic streaking field, polarized perpendicular to the
driving field, is used to disturb the electron trajectory after
ionization. In this scheme, there are two key observables:
the harmonic intensity and the ratio of the components of
the harmonics polarized in the two orthogonal directions. By
measuring these observables as a function of the relative phase
between the two fields and invoking a classical-trajectory
analysis (“displacement gate” and “velocity gate”), the ion-
ization and return times can be determined for each harmonic
order. The OTC scheme has been extended to complex-time
trajectories in Ref. [27]. The ionization and return times
extracted from the ω–2ω OTC scheme using the original
(Coulomb-free) displacement gate and velocity gate agree
very well with the QO model. Considering that the QO model
neglects the Coulomb interaction between the electron and
the parent ion, this finding implies that the original trajectory
analysis of the ω–2ω data does not give access to Coulomb
effects on the ionization and return times.

The Coulomb potential is known to significantly influence
strong-field ionization and HHG [28–36]. It has been shown
that the Coulomb potential can lead to an ionization-time
shift of about 35 attoseconds in HHG [33], which is not
observed when using the above-described ω–2ω OTC scheme.
Recently, we have analyzed this issue and found that streaking
with higher frequencies such as 4ω rather than 2ω remedies
the problem and provides the correct Coulomb-shifted times
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[35]. The advantage of the high-frequency method is that no
knowledge about the Coulomb interaction is needed in the
formulation of the retrieval equations that are used to extract
the times from the observables. The drawback, however, is
that the experimental implementation of a higher streaking
frequency is substantially more challenging than the ω–2ω

scheme.
In this work, we refine the theoretical model underlying the

OTC probe method by incorporating the Coulomb interaction
into the dynamics in the direction of the probe polarization.
We then apply the method to data obtained by solving the
time-dependent Schrödinger equation (TDSE). With the mod-
ified retrieval equations, we find that the resulting ionization
time includes the Coulomb-induced shift. This means that
effectively, the scheme has improved temporal measurement
accuracy and thus extends the universality of the original OTC
scheme. In other words, while the information about Coulomb
shifts is present in the ω–2ω two-color data, a careful analysis
is required to extract it.

In Sec. II, we present the details of the TDSE and Gabor
transform, which is applied to isolate the short HHG trajec-
tory. In Sec. III, we introduce the Coulomb corrections to
the OTC method. We then apply the modified retrieval equa-
tions to reconstruct the time information in Sec. IV. Section V
concludes our work.

II. NUMERICAL MODEL

The model system for the TDSE simulations is the same
as in the previous work [35] and the simulation parameters
are similar. For completeness, we briefly repeat the main
points. The dynamics of the helium model atom interacting
with two-color fields is described by solving the TDSE in the
single-active-electron approximation for a two-dimensional
(2D) potential V (r) = −1/

√
r2 + a, where r = [x y]T is the

electron position and the soft-core parameter a = 0.0684 a.u.
is chosen to reproduce the ionization potential of helium, i.e.,
Ip = 24.6 eV. In the length gauge, the TDSE reads (Hartree
atomic units are used unless otherwise stated)

i
∂

∂t
ψ =

[
−1

2

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (r) + r · E(t )

]
ψ. (1)

The OTC field E(t ) = −Ȧ(t ) follows from the vector poten-
tial

A(t ) = −E0

ω
f (t )

[
sin(ωt )

ε
n sin(nωt + φ)

]
. (2)

Throughout the paper, we use indices x and y to denote the
two components of a vector. E0 and ω are the field amplitude
and the frequency of the fundamental laser pulse. The relative
amplitude ε is set to 0.02. The two-color delay φ is the relative
phase between the main driving field polarized along the x
axis and the perturbing probe field (streaking field) polarized
along the y axis. The factor n (n ∈ R, n > 0) determines
the streaking frequency nω. The envelope f (t ) consists of a
one-cycle rising edge, one-cycle flattop, and one-cycle falling
edge. The range of the laser pulse is from −T to 2T with the
optical period T = 2π/ω so that t = 0 is the beginning of
the flat-top region. We use a ramp of the form cos6(ωt/4) for

the leading edge (−T � t � 0) and sin6(ωt/4) for the trailing
edge (T � t � 2T ).

We solve the 2D TDSE using the Crank-Nicolson method
[37,38] with a time step of 0.02 a.u. The Cartesian grid
has the size Lx × Ly = 300 × 160 a.u. with 3000 × 1600 grid
points. A mask function M(x) along the x axis with M(x) =
cos1/8(π (|x| − x0)/(Lx − 2x0)) for |x| � x0 and M(x) = 1 for
|x| � x0 is applied to absorb the wave function at the bound-
ary, where we set x0 = 1.1E0/ω

2. For the y direction, we
apply a similar treatment with y0 = (7/18)Ly. From the time-
dependent wave function, the dipole acceleration is calculated
via the Ehrenfest theorem [39],

a(t ) = 〈ψ | ∂rV (r) + E(t ) |ψ〉. (3)

The high-order harmonic spectrum cannot be directly used
as an observable for the time retrieval because there are two
types of electron trajectories contributing to the same har-
monic order, known as the “short” and “long” trajectories, and
their interference significantly affects the harmonic radiation
[12]. In experiments, the short trajectory can be selected by
setting appropriate macroscopic conditions [4,40,41]. On the
theory side, we use the Gabor transform to isolate the short
trajectory [6,42,43]. The total Gabor intensity IG(�, t ) =
IGx (�, t ) + IGy (�, t ) reads

IG(�, t ) =
∑
j=x,y

∣∣∣∣
∫

dt ′a j (t
′) e−(t ′−t )2

/(2σ 2 )+i�t ′
∣∣∣∣
2

, (4)

with the harmonic frequency � and σ = 1/(3ω). To ensure
the distinguishability of electron trajectories, we limit the
analysis to the plateau region with harmonic orders between
the 20th and 60th for the short trajectory. For any given
harmonic frequency �, we find the time te that corresponds
to the maximum of the time-dependent function IG(�, t ). We
interpret te as the emission time for the given value of �. The
time te is within the range of [0.3T, 0.7T ] for the short trajec-
tory. It serves only to obtain the harmonic intensity IG(�, te)
and the amplitude ratio R(�) = √

IGy (�, te)/IGx (�, te) of the
components polarized along y and x. These are two measur-
able observables that depend on the two-color delay and on
the streaking frequency.

III. COULOMB CORRECTIONS FOR
THE TIME-RETRIEVAL EQUATIONS

After obtaining the measurable quantities, it is necessary to
relate these observables to the ionization and return times via
a theoretical model. The original analysis in Refs. [26,27] is
based on the assumption that the electron follows a Newtonian
trajectory such that the force along the probe field direction
(orthogonal to the main driving field) arises from the probe
field alone and does not include the Coulomb interaction.
Furthermore, the probe field is chosen weak enough to ensure
that the ionization and return times are determined purely by
the longitudinal dynamics along the fundamental field and
they are not altered by the probe field. However, the effect of
the Coulomb interaction on the electron motion in the probe-
field direction cannot necessarily be ignored. In the present
work, we use a Coulomb-corrected Newtonian trajectory to
deduce the retrieval equations for obtaining the ionization and
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return times. In principle, when assuming a monochromatic
field, i.e., f (t ) ≡ 1, the lateral electron trajectory y(t ) obeys
Newton’s second law in the form

ÿ(t ) = −ε E0 cos(nωt + φ) − ∂Vc

∂y
, (5)

where the Coulomb force −∂Vc/∂y follows from the Coulomb
potential Vc. We assume that the ionization time ti may be
complex. In this case, we follow the usual interpretation that
the time path from ti to Re ti corresponds to tunneling of the
electron through the laser-induced potential barrier until it
reaches the tunnel exit at t = Re ti. For the tunneling path be-
tween ti and Re ti, we neglect the Coulomb interaction (this is
justified by the good agreement between the classical models
and the analytical R-matrix theory, ARM, see Sec. IV) so that
the velocity is

ẏ(t ) = vy0 − εE0

nω
[sin(nωt + φ) − sin(nωti + φ)] (6)

with the initial lateral velocity vy0 at the ionization time. For
real times t > Re ti, we assume that the Coulomb term in
Eq. (5) is relevant only for a short time compared to the laser
period so that the Coulomb-induced momentum change of the
electron can be approximated as a short kick. The magnitude
of the Coulomb kick 
vy can be calculated by treating the
electric field as constant, which leads to [44]


vy = ε πE0 cos(nω Re ti + φ)

(2Ip)3/2
. (7)

Hence, for times t > Re ti, we have the lateral velocity

ẏ(t ) = vy0 − εE0

nω
[sin(nωt + φ) − sin (nωti + φ)]

+
vy. (8)

Integrating Eqs. (6) and (8) from ti to t and applying the initial
condition y(ti ) = 0, the lateral electron trajectory for t > Re ti
is

y(t ) = vy0(t − ti ) + 
vy(t − Re ti )

+ εE0

(nω)2 [cos(nωt + φ) − cos(nωti + φ)]

+ εE0

nω
sin(nωti + φ)(t − ti ). (9)

The return time tr of the electron may be complex so that the
final part of the electron trajectory lasts from Re tr to tr [33]
and the expressions above need to be extended to complex
arguments t . However, we will neglect the (usually small)
imaginary part of tr in the retrieval equations below.

The use of complex times is motivated by the QO model
[12]. In the QO model, complex times ti, tr are obtained as
solutions of the saddle-point equations

v2(ti )/2 = −Ip, v2(tr )/2 = � − Ip, (10)

where the electron velocity is v(t ) = p + A(t ) with the
saddle-point momentum p = −1/(tr − ti )

∫ tr
ti

A(t )dt . As a
consequence of the weak amplitude of the probe field, the lat-
eral components [vy, py, and Ay(t )] are negligible in Eq. (10)
as far as the calculation of the times ti, tr is concerned.

These saddle-point equations result from finding the station-
ary points of the action S = ∫ tr

ti
dt[v2(t )/2 + Ip]. The QO

model is a Coulomb-free theory; in the results below it will
be used only as a reference theory, while our actual aim is the
retrieval of ionization and return times in the presence of the
Coulomb interaction. When the ionization potential Ip is set to
zero in the first equation of the QO model, i.e., when setting
v2(ti )/2 = 0, we arrive at the so-called simple man’s model,
in which all times are real and the trajectories are classical [9].

To generate high-order harmonics by recombination, the
recollision condition y(tr ) − y(ti ) = 0 has to be met. There-
fore, from Eq. (9), the required initial lateral velocity is

vy0 = −εE0

nω

[
sin(ϕi ) + cos(ϕr ) − cos(ϕi)

nω(tr − ti )

]

− 
vy(tr − Re ti )

tr − ti
, (11)

with ϕi = nωti + φ and ϕr = nωtr + φ. The strongest HHG
signal is obtained for vanishing real part of the initial lateral
velocity, Re vy0 = 0 [27,45,46].

In the trajectory picture, the amplitude ratio R defined
in Sec. II is determined by the ratio of the return velocity
components in y and x directions [27], R = |ẏ(tr )/ẋ(tr )|. Here
ẋ(tr ) = √

2(� − Ip) is the x component of the return velocity,
where we neglect the small effect of the probe field. Inserting
Eq. (11) into Eq. (8), we have

ẏ(t ) = M
[

sin(ϕi ) + cos(ϕr )−cos(ϕi )

nω(tr − ti )

]
− 
vy(tr −Re ti )

tr − ti
+M[sin(nωt + φ) − sin (ϕi )] + 
vy

= M
[
sin(nωt+φ) + cos(ϕr )−cos(ϕi )

nω(tr − ti )

]
−
vy

i Imti
tr −ti

,

(12)

with M = −εE0/(nω), leading to the return velocity at tr :

ẏ(tr ) = − εE0

nω

[
sin(ϕr ) + cos(ϕr ) − cos(ϕi )

nω(tr − ti )

]

− 
vy
i Imti
tr − ti

. (13)

Therefore, R can be written as

R = εE0/(nω)√
2(� − Ip)

×
∣∣∣∣sin(ϕr ) + cos(ϕr ) − cos(ϕi)

nω(tr − ti )
+ 
vynωi Imti

εE0(tr − ti )

∣∣∣∣.
(14)

In the ω–2ω experiments, the measured amplitude ratio R is
the square root of the intensity ratio of adjacent odd and even
harmonics [26,47].

Analogous to the terminology in Refs. [26,27], Eqs. (11)
and (14) may be termed Coulomb-corrected displacement gate
and velocity gate. Compared to the two gates in Refs. [26,27],
Coulomb corrections are included through the Coulomb kick

vy appearing in the last terms in Eqs. (11) and (14). These
two gates establish a direct connection between the observ-
ables and the two times tr , ti. If we know (from experiment

063102-3



YUE, LIU, XUE, DU, AND LEIN PHYSICAL REVIEW A 107, 063102 (2023)

FIG. 1. The harmonic spectra polarized along the x direction
(red solid curve) and along the y direction (blue dashed curve)
calculated for the helium model atom driven by an ω–2ω field
with ω = 0.057 a.u., E0 = 0.1068 a.u., φ = 0, calculated as Pj (�) =
| ∫ aj (t ) exp(i�t ) dt |2 with j = x, y.

or simulation) the two-color delay that gives the strongest
harmonic intensity and the two-color delay that maximizes
the amplitude ratio R, both times can be retrieved. The cor-
responding two retrieval equations have the form

Re vy0 = 0, ∂R/∂φ = 0. (15)

In principle, Eq. (15) is a system of two equations with
four unknowns: Re ti, Im ti, Re tr , and Im tr . However, in
good approximation [27,48], we can neglect the imaginary
part of tr and substitute the imaginary part of ti with the
Keldysh time [49] at the instantaneous time Re ti, i.e., Im ti =√

2Ip/|Ex(Re ti )|. With these simplifications, there are only
two unknowns in Eq. (15), namely the real parts of ti and
tr , which are interpreted as the physical ionization and return
times. These two quantities can be found by solving the sys-
tem of two equations in Eq. (15).

IV. RESULTS

The two-color HHG spectra are shown in Fig. 1 for an
800-nm fundamental field with intensity 4.0 × 1014 W/cm2

and a probe field with two-color delay φ = 0 and n = 2.
The red and blue lines represent the x and y components,
respectively. Due to the low probe-field amplitude (2% of the
main field), the harmonic intensity polarized along the y axis
is much weaker. Both spectra exhibit a plateau from the 20th
to the 65th harmonic order, followed by a cutoff near the ex-
pected energy value Ec = Ip + 3.17Up, where Up = E2

0 /(4ω2)
is the ponderomotive energy.

The two observables used for the further analysis are
shown in Fig. 2. These data result from TDSE simulations for
an ω–2ω laser field. The harmonic intensity (left panel) and
the y-to-x amplitude ratio R (right panel) depend on the two-
color delay. For each harmonic order, we can find the optimal
phase φh maximizing the harmonic intensity [green dash-
dotted line in Fig. 2(a)] and the optimal phase φa maximizing
the amplitude ratio [green dash-dotted line in Fig. 2(b)]. The
white solid lines, which are very close to the TDSE results,

FIG. 2. TDSE results using ω–2ω fields: The normalized har-
monic intensity (a) and the amplitude ratio (b) are shown in color
density as functions of the harmonic order and the two-color delay.
The optimal phases that maximize the observables are shown as
white solid curves (SFA) and green dashed-dotted curves (TDSE).
The fundamental driving field is the same as in Fig. 1.

are the optimal phases from the Coulomb-free two-color SFA
model where the harmonic intensity is calculated as

Is = |e−i(S−�tr )|2 (16)

with the action S = ∫ tr
ti

dt[v2(t )/2 + Ip] evaluated at the one-
color saddle-point times ti, tr of the QO model, but with
the two-color field included in the evaluation of v. Solving
Eq. (15) with the input values φh and φa from the TDSE gives
access to the real parts of ionization and return times.

Previous studies [26,27] show that the reconstructed ion-
ization and return times using ω–2ω OTC fields are consistent
with the QO model when the Coulomb-free retrieval equa-
tions are used. This agreement indicates that the extracted
times lack Coulomb effects. This is also reflected by the fact
that the optimal phases obtained from TDSE and SFA match
well in Fig. 2. Figure 3(a) shows the times extracted via the
Coulomb-free retrieval equations, i.e., using Eqs. (11), (14),
and (15) with 
vy ≡ 0, in the case of ω–2ω fields. Indeed,
the times from TDSE agree closely with the real parts of the
saddle-point times from the QO model. For completeness, the
figure shows also the results from the simple man’s model,
which are significantly different.

The retrieved ionization and return times using the
Coulomb-corrected equations [Eqs. (7), (11), (14), and (15)]
are shown in Fig. 3(b). While the return times are almost
unchanged, the ionization times are shifted by roughly 30 at-
toseconds to earlier times. To assess these results, we compare
with three different models that quantify the influence of the
Coulomb interaction on the times when only the fundamental
field is considered: A full description of the classical model
(CM) and the analytical R-matrix (ARM) theory is given in
Refs. [33,35,36]; the details of the adiabatic model are given
in the Appendix. Besides the specific results shown below,
we have checked that there is good agreement between the
models in the region of Keldysh parameters γ < 1. For the
ionization time (light blue shaded area in the left part of the
plot), the results from CM, ARM, and the adiabatic model
agree very well with each other. These models indicate that
the attractive Coulomb force shifts ionization by about 35
attoseconds to earlier times. The match with the Coulomb-
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FIG. 3. Ionization and return times reconstructed from the ω–2ω

TDSE results. (a) Results based on the Coulomb-free OTC scheme
shown as red empty triangles; (b) results based on the Coulomb-
corrected OTC scheme shown as violet triangles. The black solid
lines represent the real parts of the times from the Coulomb-free QO
model. The light-gray dashed line shows the times from the simple
man’s model. Furthermore, ionization and return times from various
models with Coulomb interaction are shown: ARM (green dashed
lines), CM (red dash-dotted lines), and the adiabatic model (blue
dotted lines). The laser parameters are same as in Fig. 2. Light blue
and light yellow shaded areas show the temporal regions of ionization
and recombination, respectively.

corrected ω–2ω TDSE results is particularly good at high
harmonic orders. At lower harmonic orders, the match is
still good with the two-color results being a few attoseconds
behind the model predictions. For the return time (light yellow
shaded area in the right part of the plot), we find (i) the TDSE
nearly coincides with the adiabatic model and the QO model;
(ii) ARM theory shows a shift of 3-10 attoseconds when
compared to the QO model, which was already reported in
Ref. [33]; and (iii) the time shift of the CM varies between
≈10 and ≈45 attoseconds, decreasing with increasing har-
monic order. Overall, the return time is less affected by the
Coulomb potential than the ionization time. In view of ARM
theory being a quantum-mechanical model that includes the
Coulomb interaction both in the under-barrier motion and in
the subsequent unbound motion, it can be considered as the
most accurate of the three models. This is consistent with
the good agreement between ARM theory and the two-color

FIG. 4. Ionization and return times from TDSE with an ω–4.6ω

field (blue stars) compared to ARM (greed dashed lines), QO (black
lines), and the simple man’s model (light gray dashed lines).

TDSE for the return time. The CM and the adiabatic model, on
the other hand, although being slightly less accurate, have the
benefit of providing a simple interpretation of the Coulomb
shift: The electron must appear earlier so that the attractive
Coulomb force is compensated by additional field acceler-
ation [35,36]. Overall, we can conclude that the Coulomb
correction for the OTC method is reasonable and that the mod-
ified equations successfully reveal the Coulomb time shift.

We also apply the modified retrieval equations to the case
of high-frequency streaking. Figure 4 displays the times ob-
tained from TDSE data via the Coulomb-corrected scheme
with an ω–4.6ω field, shown as blue stars. Obviously, both
ionization and return times are in line with the ARM re-
sults. In our previous work [35], we found that, even without
the Coulomb correction, the high-frequency OTC method is
able to measure the Coulomb time shift well; see Fig. 2 in
Ref. [35]. When the Coulomb correction is included, our
results show that both low and high streaking frequencies can
be used to perform an accurate measurement.

V. CONCLUSIONS

In summary, we have modified the OTC scheme for
probing ionization and return times in HHG by employing
Coulomb-corrected Newtonian trajectories. From a measure-
ment of the harmonic intensity and the y-to-x amplitude ratio
as a function of the two-color delay, the times can be re-
trieved. Compared to the Coulomb-free displacement gate and
velocity gate in Refs. [26,27], the modified scheme correctly
recovers the Coulomb shift of the ionization time in HHG and
therefore it can be considered more reliable. The correctness
of the Coulomb shift retrieved from TDSE results is shown
by the comparison with three different models that all give
similar results for the ionization time. One of these models
is the analytical R-matrix theory, first proposed and used in
Ref. [33] to evaluate the Coulomb shifts. While the required
experimental observables are the same as in the OTC scheme
of [26,27], the analysis introduced in the present work differs
in the equations that are used to extract the ionization time.
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The success of the scheme holds no matter whether a low or
high streaking frequency is used. While the high-frequency
streaking method (probe frequencies of about 4ω or higher)
works well even without the modification of the retrieval
equations, as shown in Ref. [35], the “low-frequency method”
(ω–2ω) needs the Coulomb modification. We note that the
ω–2ω method is easier to use in an actual experiment. It is
important to note that the Coulomb correction in the time-
retrieval equations refers to the component of the electron
motion along the probe field, which is orthogonal to the strong
fundamental driving field, whereas the Coulomb shift of the
ionization time is due to the Coulomb effect on the motion
along the fundamental field. In this sense, the probe scheme
makes no assumptions about the motion along the fundamen-
tal field. In practice, applying the Coulomb-corrected scheme
is not significantly more difficult than the original scheme.
Experimentally, it is challenging to measure the absolute value
of the two-color delay as one typically measures only the
variation of the optimal phases with harmonic order. In this
case, additional assumptions are needed to obtain the ioniza-
tion time; see Ref. [26]. The same can be done in combination
with the scheme presented here. Hence, we conclude that the
proposed scheme is well suited to reveal the Coulomb shift of
the ionization time in an experiment.
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APPENDIX: ADIABATIC MODEL

In this Appendix, we describe the adiabatic model for the
Coulomb effect on the ionization and return times of HHG.
Here, only the linearly polarized fundamental field Ex(t ) is
considered,

Ex(t ) = −∂Ax(t )

∂t
= E0 cos(ωt ), (A1)

with the vector potential Ax(t ) = −E0 sin(ωt )/ω. In the
model, the electron travels along a classical trajectory between
the real times τi (ionization time) and τr (return time). The
term “adiabatic” refers to the initial conditions of the trajec-
tories: (i) the initial position is chosen as the tunnel exit in
the static-field limit of tunneling through a triangular barrier;
and (ii) the Coulomb potential is taken into account by choos-
ing a nonzero initial velocity equal to the Coulomb-induced
momentum change acquired by an outgoing electron under
the assumption of a static electric field. In detail, the electron
trajectory starts at the tunnel exit xi = −Ip/Ex(τi ) and it ends
at the position xr = 0, since recollision with the parent ion
is required for HHG. Except for the above-mentioned choice
of initial velocity, the Coulomb force is neglected so that the
displacement between τi and τr can be expressed as

xr − xi =
∫ τr

τi

[px(τi, τr ) + Ax(t )] dt (A2)

with the canonical momentum

px(τi, τr ) = xr − xi

τr − τi
− 1

τr − τi

∫ τr

τi

Ax(t ) dt . (A3)

In terms of the canonical momentum, the initial velocity at τi

is

vx(τi ) = px(τi, τr ) + Ax(τi ) (A4)

and the final velocity at τr is

vx(τr ) = px(τi, τr ) + Ax(τr ). (A5)

The initial velocity is set equal to the adiabatic Coulomb-
induced velocity change along the x axis [44,50]

vx(τi ) = α
πEx(τi )

(2Ip)3/2
, (A6)

where α denotes the Coulomb interaction strength: α = 1 is
the case of the full Coulomb interaction; α = 0 represents the
Coulomb-free case. For α = 0, we denote the ionization and
return times as τ 0

i and τ 0
r . In order to generate the harmonic

frequency �, the electron must return with the velocity

vx(τr ) = vr = √
2(� − Ip), (A7)

where we choose a positive sign, assuming that the electron
returns from the negative side. This implies that the field at
the ionization time is positive, Ex(τi ) > 0.

From Eqs. (A4)–(A7), we derive that, to first order in the
Coulomb interaction, the ionization and return times must
change (relative to the Coulomb-free case) by dτi and dτr that
satisfy

dvx(τi ) = α
πEx

(
τ 0

i

)
(2Ip)3/2

= ∂ px

∂τi

∣∣∣∣
τ 0

i ,τ 0
r

dτi + ∂ px

∂τr

∣∣∣∣
τ 0

i ,τ 0
r

dτr + ∂Ax(τi )

∂τi

∣∣∣∣
τ 0

i

dτi,

(A8)

and

dvx(τr ) = 0 = ∂ px

∂τi

∣∣∣∣
τ 0

i ,τ 0
r

dτi + ∂ px

∂τr

∣∣∣∣
τ 0

i ,τ 0
r

dτr

+ ∂Ax(τr )

∂τr

∣∣∣∣
τ 0

r

dτr . (A9)

Solving Eqs. (A8) and (A9), we obtain the Coulomb-induced
ionization time shift

dτi = − απ

(2Ip)3/2

(
τ 0

r − τ 0
i

)
Ex

(
τ 0

r

) + vr(
τ 0

r − τ 0
i

)
Ex

(
τ 0

r

) + vr + IpĖx(τ 0
i )Ex (τ 0

r )

E3
x (τ 0

i )

(A10)

and the return time shift

dτr = απ

(2Ip)3/2

IpĖx
(
τ 0

i

)
/E2

x

(
τ 0

i

)
(
τ 0

r − τ 0
i

)
Ex

(
τ 0

r

) + vr + IpĖx (τ 0
i )Ex (τ 0

r )
E3

x (τ 0
i )

.

(A11)
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The terms involving the time derivative of the field originate
from

∂xi

∂τi

∣∣∣∣
τ 0

i

= Ip Ėx
(
τ 0

i

)
/E2

x

(
τ 0

i

)
. (A12)

If the tunnel exit is instead chosen independent of the
ionization time, i.e., ∂xi

∂τi
|τ 0

i
= 0, we arrive at the simple

adiabatic correction dτi = −απ/(2Ip)3/2 used in Ref. [35]

and vanishing return time shift dτr = 0. Compared to
the simple adiabatic correction, the ionization time ob-
tained from Eq. (A10) is shifted to slightly earlier val-
ues with the difference varying between ≈2 and ≈7
attoseconds.

Finally, the actual ionization and return times of the adia-
batic model are obtained by adding the shifts dτi and dτr to
the values obtained from the Coulomb-free QO model.
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