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The Coulomb interaction between the active electron and the parent ion is inherent in high-order
harmonic generation from laser-driven atoms, but it is often neglected in modeling the electron
dynamics. For this reason, the pioneering measurement scheme based on orthogonally polarized
two-color fields reported in [Nature (London) 485, 343 (2012)], which is able to measure ionization
and return times for the electron trajectories, does not reflect the time shifts caused by the Coulomb
interaction. We introduce a simple Coulomb correction to the electron motion in the two-color
scheme, leading to modified retrieval equations for the extraction of time information from the
observables. We apply the modified equations to data calculated from simulations of the time-
dependent Schrödinger equation and we show that the scheme effectively reveals the Coulomb shift
of the ionization time.

I. INTRODUCTION

Resolving ultrafast dynamics of the microworld on
their natural time scale is the aim of ultrafast detection.
Thanks to the development of strong-field physics over
the past decades, ultrafast detection has broken through
the femtosecond limit, thus opening the door of attosec-
ond science [1]. High-order harmonic generation (HHG),
which stands for the nonlinear and nonperturbative re-
sponse to strong fields, causes emission of radiation that
carries information on ultrafast dynamics and hence it
has numerous applications for probing the dynamics in
atoms, molecules, and solids [2–8]. The classical physical
picture of the HHG process is described by the three-step
model [9, 10] consisting of ionization, followed by acceler-
ation and return of the electron, which then recombines
with the parent ion. The quantum-mechanical version of
the three-step model is known as the strong-field approx-
imation (SFA) or Lewenstein model [11]. Its formulation
in terms of complex-valued electron trajectories is known
as the quantum-orbit (QO) model [12].

The measurement of the times of ionization and re-
turn (recombination) is an important topic in HHG. It
deepens our understanding of the mechanism of HHG in
terms of trajectories, but it also has practical implica-
tions. For example, the understanding of spectral caus-
tics requires the accurate knowledge of electron trajecto-
ries [13–15]. More generally, the time structure of the tra-
jectories is needed for the application of high-harmonic
spectroscopy (HHS) to dynamical problems. HHS refers
to the extraction of static and dynamical properties of
atoms, molecules, and condensed phases from the HHG
signal. For example, trajectory-resolved HHS can be used
to investigate the motion of nuclei in molecules [4, 16, 17],
dynamical symmetries [6, 18], and the evolution of elec-
tronic wavepackets under the tunneling barrier [19, 20].
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The accuracy of these measurements depends on well-
defined ionization and return times.

Orthogonally polarized two-color (OTC) fields are fre-
quently applied for manipulating electron trajectories or
wavepackets [21–25]. They provide a method to retrieve
both ionization and return times in HHG [26]: A weak
second-harmonic streaking field, polarized perpendicular
to the driving field, is used to disturb the electron tra-
jectory after ionization. In this scheme, there are two
key observables: the harmonic intensity and the ratio of
the components of the harmonics polarized in the two or-
thogonal directions. By measuring these observables as
a function of the relative phase between the two fields
and invoking a classical-trajectory analysis (“displace-
ment gate” and “velocity gate”), the ionization and re-
turn times can be determined for each harmonic order.
The OTC scheme has been extended to complex-time
trajectories in Ref. [27]. The ionization and return times
extracted from the ω–2ω OTC scheme using the origi-
nal (Coulomb-free) displacement gate and velocity gate
agree very well with the QO model. Considering that
the QO model neglects the Coulomb interaction between
the electron and the parent ion, this finding implies that
the original trajectory analysis of the ω–2ω data does
not give access to Coulomb effects on the ionization and
return times.

The Coulomb potential is known to significantly in-
fluence strong-field ionization and HHG [28–36]. It
has been shown that the Coulomb potential can lead
to an ionization-time shift of about 35 attoseconds in
HHG [33], which is not observed when using the above-
described ω–2ω OTC scheme. Recently, we have ana-
lyzed this issue and found that streaking with higher fre-
quencies such as 4ω rather than 2ω remedies the prob-
lem and provides the correct Coulomb-shifted times [35].
The advantage of the high-frequency method is that no
knowledge about the Coulomb interaction is needed in
the formulation of the retrieval equations that are used
to extract the times from the observables. The draw-
back, however, is that the experimental implementation
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of a higher streaking frequency is substantially more chal-
lenging than the ω–2ω scheme.

In this work, we refine the theoretical model un-
derlying the OTC probe method by incorporating the
Coulomb interaction into the dynamics in the direction
of the probe polarization. We then apply the method to
data obtained by solving the time-dependent Schrödinger
equation (TDSE). With the modified retrieval equations,
we find that the resulting ionization time includes the
Coulomb-induced shift. This means that effectively, the
scheme has improved temporal measurement accuracy
and thus extends the universality of the original OTC
scheme. In other words, while the information about
Coulomb shifts is present in the ω–2ω two-color data, a
careful analysis is required to extract it.

In Section II we present the details of the TDSE
and Gabor transform, which is applied to isolate the
short HHG trajectory. In Section III, we introduce the
Coulomb corrections to the OTC method. We then apply
the modified retrieval equations to reconstruct the time
information in Section IV. Section V concludes our work.

II. NUMERICAL MODEL

The model system for the TDSE simulations is the
same as in the previous work [35] and the simulation pa-
rameters are similar. For completeness, we briefly repeat
the main points. The dynamics of the helium model atom
interacting with two-color fields is described by solving
the TDSE in the single-active-electron approximation for
a two-dimensional (2D) potential V (r) = −1/

√
r2 + a,

where r = [x y]T is the electron position and the softcore
parameter a = 0.0684 a.u. is chosen to reproduce the
ionization potential of helium, i.e., Ip = 24.6 eV. In the
length gauge, the TDSE reads (Hartree atomic units are
used unless otherwise stated)

i
∂

∂t
ψ =

[
−1

2

(
∂2

∂x2
+

∂2

∂y2

)
+ V (r) + r ·E(t)

]
ψ. (1)

The OTC field E(t) = −Ȧ(t) follows from the vector
potential

A(t) = −E0

ω
f(t)

[
sin(ωt)

ϵ
n sin(nωt+ ϕ)

]
. (2)

Throughout the paper, we use indices x and y to denote
the two components of a vector. E0 and ω are the field
amplitude and the frequency of the fundamental laser
pulse. The relative amplitude ϵ is set to 0.02. The two-
color delay ϕ is the relative phase between the main driv-
ing field polarized along the x-axis and the perturbing
probe field (streaking field) polarized along the y-axis.
The factor n (n ∈ R, n > 0) determines the streaking
frequency nω. The envelope f(t) consists of a one-cycle
rising edge, one-cycle flattop, and one-cycle falling edge.
The range of the laser pulse is from −T to 2T with the
optical period T = 2π/ω so that t = 0 is the beginning of

the flattop region. We use a ramp of the form cos6(ωt/4)
for the leading edge (−T ≤ t ≤ 0) and sin6(ωt/4) for the
trailing edge (T ≤ t ≤ 2T ).
We solve the 2D TDSE using the Crank-Nicolson

method [37, 38] with a time step of 0.02 a.u. The Carte-
sian grid has the size Lx × Ly = 300 × 160 a.u. with
3000 × 1600 grid points. A mask function M(x) along
the x-axis with M(x) = cos1/8 (π (|x| − x0) / (Lx − 2x0))
for |x| ≥ x0 and M (x) = 1 for |x| ≤ x0 is applied to
absorb the wavefunction at the boundary, where we set
x0 = 1.1E0/ω

2. For the y-direction, we apply a similar
treatment with y0 = (7/18)Ly. From the time-dependent
wavefunction, the dipole acceleration is calculated via the
Ehrenfest theorem [39],

a (t) = ⟨ψ| ∂rV (r) +E(t) |ψ⟩ . (3)

The high-harmonic spectrum cannot be directly used
as an observable for the time retrieval because there
are two types of electron trajectories contributing to
the same harmonic order, known as the “short” and
“long” trajectories, and their interference significantly
affects the harmonic radiation [12]. In experiments,
the short trajectory can be selected by setting appro-
priate macroscopic conditions [4, 40, 41]. On the the-
ory side, we use the Gabor transform to isolate the
short trajectory [6, 42, 43]. The total Gabor intensity
IG (Ω, t) = IGx (Ω, t) + IGy (Ω, t) reads

IG (Ω, t) =
∑
j=x,y

∣∣∣∣∫ dt′aj(t
′) e−(t

′−t)
2
/(2σ2)+iΩt′

∣∣∣∣2 , (4)

with the harmonic frequency Ω and σ = 1/ (3ω). To
ensure the distinguishability of electron trajectories, we
limit the analysis to the plateau region with harmonic or-
ders between the 20th and 60th for the short trajectory.
For any given harmonic frequency Ω, we find the time te
that corresponds to the maximum of the time-dependent
function IG(Ω, t). We interpret te as the emission time
for the given value of Ω. The time te is within the range of
[0.3T, 0.7T ] for the short trajectory. It serves only to ob-
tain the harmonic intensity IG (Ω, te) and the amplitude
ratio R(Ω) =

√
IGy

(Ω, te)/IGx
(Ω, te) of the components

polarized along y and x. These are two measurable ob-
servables that depend on the two-color delay and on the
streaking frequency.

III. COULOMB CORRECTIONS FOR THE
TIME-RETRIEVAL EQUATIONS

After obtaining the measurable quantities, it is neces-
sary to relate these observables to the ionization and re-
turn times via a theoretical model. The original analysis
in Refs. [26, 27] is based on the assumption that the elec-
tron follows a Newtonian trajectory such that the force
along the probe field direction (orthogonal to the main
driving field) arises from the probe field alone and does
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not include the Coulomb interaction. Furthermore, the
probe field is chosen weak enough to ensure that the ion-
ization and return times are determined purely by the
longitudinal dynamics along the fundamental field and
they are not altered by the probe field. However, the
effect of the Coulomb interaction on the electron motion
in the probe-field direction cannot necessarily be ignored.
In the present work, we use a Coulomb-corrected New-
tonian trajectory to deduce the retrieval equations for
obtaining the ionization and return times. In principle,
when assuming a monochromatic field, i.e., f(t) ≡ 1, the
lateral electron trajectory y(t) obeys Newton’s second
law in the form

ÿ(t) = −ϵE0 cos(nωt+ ϕ)− ∂Vc
∂y

, (5)

where the Coulomb force −∂Vc/∂y follows from the
Coulomb potential Vc. We assume that the ionization
time ti may be complex. In this case, we follow the usual
interpretation that the time path from ti to Re ti cor-
responds to tunneling of the electron through the laser-
induced potential barrier until it reaches the tunnel exit
at t = Re ti. For the tunneling path between ti and Re ti,
we neglect the Coulomb interaction (this is justified by
the good agreement between the classical models and the
analytical R-matrix theory, ARM, see Section IV) so that
the velocity is

ẏ (t) = vy0 −
ϵE0

nω
[sin(nωt+ ϕ)− sin(nωti + ϕ)] (6)

with the initial lateral velocity vy0 at the ionization time.
For real times t > Re ti, we assume that the Coulomb
term in Eq. (5) is relevant only for a short time com-
pared to the laser period so that the Coulomb-induced
momentum change of the electron can be approximated
as a short kick. The magnitude of the Coulomb kick
∆vy can be calculated by treating the electric field as
constant, which leads to [44]

∆vy =
ϵ πE0 cos (nωRe ti + ϕ)

(2Ip)
3/2

. (7)

Hence, for times t > Re ti, we have the lateral velocity

ẏ (t) = vy0 −
ϵE0

nω
[sin(nωt+ ϕ)− sin (nωti + ϕ)]

+ ∆vy (8)

Integrating Eqs. (6),(8) from ti to t and applying the
initial condition y(ti) = 0, the lateral electron trajectory
for t > Re ti is

y (t) = vy0 (t− ti) + ∆vy (t− Re ti)

+
ϵE0

(nω)
2 [cos(nωt+ ϕ)− cos(nωti + ϕ)]

+
ϵE0

nω
sin(nωti + ϕ) (t− ti) . (9)

The return time tr of the electron may be complex so
that the final part of the electron trajectory lasts from
Re tr to tr [33] and the expressions above need to be ex-
tended to complex arguments t. However, we will neglect
the (usually small) imaginary part of tr in the retrieval
equations below.
The use of complex times is motivated by the QO

model [12]. In the QO model, complex times ti, tr are
obtained as solutions of the saddle-point equations

v2(ti)/2 = −Ip, v2(tr)/2 = Ω− Ip, (10)

where the electron velocity is v(t) = p + A(t) with

the saddle-point momentum p = −1/(tr − ti)
∫ tr
ti
A(t)dt.

As a consequence of the weak amplitude of the probe
field, the lateral components (vy, py, and Ay(t)) are
negligible in Eq. (10) as far as the calculation of the
times ti, tr is concerned. These saddle-point equations
result from finding the stationary points of the action

S =
∫ tr
ti
dt

[
v2(t)/2 + Ip

]
. The QO model is a Coulomb-

free theory; in the results below it will be used only as
a reference theory, while our actual aim is the retrieval
of ionization and return times in the presence of the
Coulomb interaction. When the ionization potential Ip
is set to zero in the first equation of the QO model, i.e.,
when setting v2(ti)/2 = 0, we arrive at the so-called
simple man’s model, in which all times are real and the
trajectories are classical [9].
To generate high harmonics by recombination, the rec-

ollision condition y(tr)− y(ti) = 0 has to be met. There-
fore, from Eq. (9), the required initial lateral velocity is

vy0 =− ϵE0

nω

[
sin(φi) +

cos(φr)− cos(φi)

nω (tr − ti)

]
− ∆vy (tr − Re ti)

tr − ti
, (11)

with φi = nωti + ϕ and φr = nωtr + ϕ. The strongest
HHG signal is obtained for vanishing real part of the
initial lateral velocity, Re vy0 = 0 [27, 45, 46].
In the trajectory picture, the amplitude ratio R de-

fined in Section II is determined by the ratio of the
return velocity components in y- and x-directions [27],

R = |ẏ(tr)/ẋ(tr)|. Here ẋ(tr) =
√
2 (Ω− Ip) is the x-

component of the return velocity, where we neglect the
small effect of the probe field. Inserting Eq. (11) into
Eq. (8), we have

ẏ (t) =M
[
sin(φi) +

cos(φr)−cos(φi)

nω (tr − ti)

]
− ∆vy (tr−Re ti)

tr − ti

+M [sin(nωt+ ϕ)− sin (φi)] + ∆vy

=M
[
sin(nωt+ ϕ) +

cos(φr)−cos(φi)

nω (tr − ti)

]
−∆vy

i Imti
tr − ti

, (12)

with M = −ϵE0/ (nω), leading to the the return velocity
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at tr

ẏ(tr) =− ϵE0

nω

[
sin(φr) +

cos(φr)− cos(φi)

nω (tr − ti)

]
−∆vy

i Imti
tr − ti

. (13)

Therefore R can be written as

R =
ϵE0/(nω)√
2 (Ω− Ip)

×∣∣∣∣sin(φr) +
cos(φr)− cos(φi)

nω (tr − ti)
+

∆vynωi Imti
ϵE0(tr − ti)

∣∣∣∣ . (14)

In the ω–2ω experiments, the measured amplitude ratio
R is the square root of the intensity ratio of adjacent odd
and even harmonics [26, 47].

Analogous to the terminology in [26, 27], Eqs. (11)
and (14) may be termed Coulomb-corrected displacement
gate and velocity gate. Compared to the two gates in
Refs. [26, 27], Coulomb corrections are included through
the Coulomb kick ∆vy appearing in the last terms in
Eqs. (11) and (14). These two gates establish a direct
connection between the observables and the two times tr,
ti. If we know (from experiment or simulation) the two-
color delay that gives the strongest harmonic intensity
and the two-color delay that maximizes the amplitude
ratio R, both times can be retrieved. The corresponding
two retrieval equations have the form

Re vy0 = 0, ∂R/∂ϕ = 0. (15)

In principle, Eq. (15) is a system of two equations with
four unknowns: Re ti, Im ti, Re tr, and Im tr. However,
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FIG. 1. The harmonic spectra polarized along the x-direction
(red solid curve) and along the y-direction (blue dashed curve)
calculated for the helium model atom driven by an ω–2ω field
with ω = 0.057 a.u., E0 = 0.1068 a.u., ϕ = 0, calculated as

Pj(Ω) =
∣∣∫ aj(t) exp(iΩt) dt

∣∣2 with j = x, y.

in good approximation [27, 48], we can neglect the imag-
inary part of tr and substitute the imaginary part of ti
with the Keldysh time [49] at the instantaneous time
Re ti, i.e., Im ti =

√
2Ip/ |Ex(Re ti)|. With these simplifi-

cations, there are only two unknowns in Eq. (15), namely
the real parts of ti and tr, which are interpreted as the
physical ionization and return times. These two quanti-
ties can be found by solving the system of two equations
in Eq. (15).

IV. RESULTS

The two-color HHG spectra are shown in Fig. 1 for an
800 nm fundamental field with intensity 4.0×1014 W/cm2

and a probe field with two-color delay ϕ = 0 and
n = 2. The red and blue lines represent the x- and
y-components, respectively. Due to the low probe-field
amplitude (2% of the main field), the harmonic intensity
polarized along the y-axis is much weaker. Both spectra
exhibit a plateau from the 20th to the 65th harmonic or-
der, followed by a cutoff near the expected energy value
Ec = Ip+3.17Up, where Up = E2

0/
(
4ω2

)
is the pondero-

motive energy.

The two observables used for the further analysis are
shown in Fig. 2. These data result from TDSE simula-
tions for an ω–2ω laser field. The harmonic intensity (left
panel) and the y-to-x amplitude ratio R (right panel) de-
pend on the two-color delay. For each harmonic order, we
can find the optimal phase ϕh maximizing the harmonic
intensity [green dashed-dotted line in Fig. 2(a)] and the
optimal phase ϕa maximizing the amplitude ratio [green
dashed-dotted line in Fig. 2(b)]. The white solid lines,
which are very close to the TDSE results, are the opti-
mal phases from the Coulomb-free two-color SFA model
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FIG. 2. TDSE results using ω–2ω fields: the normalized har-
monic intensity (a) and the amplitude ratio (b) are shown
in color density as functions of the harmonic order and the
two-color delay. The optimal phases that maximize the ob-
servables are shown as white solid curves (SFA) and green
dashed-dotted curves (TDSE). The fundamental driving field
is the same as in Fig. 1.
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where the harmonic intensity is calculated as

Is =
∣∣∣e−i(S−Ωtr)

∣∣∣2 (16)

with the action S =
∫ tr
ti
dt

[
v2(t)/2 + Ip

]
evaluated at

the one-color saddle-point times ti, tr of the QO model,
but with the two-color field included in the evaluation
of v. Solving Eq. (15) with the input values ϕh and ϕa
from the TDSE gives access to the real parts of ionization
and return times.

 TDSE -2

(b)

FIG. 3. Ionization and return times reconstructed from the
ω–2ω TDSE results. (a) Results based on the Coulomb-free
OTC scheme shown as red empty triangles; (b) results based
on the Coulomb-corrected OTC scheme shown as violet trian-
gles. The black solid lines represent the real parts of the times
from the Coulomb-free QO model. The light-gray dashed
line shows the times from the simple man’s model. Further-
more, ionization and return times from various models with
Coulomb interaction are shown: ARM (green dashed lines),
CM (red dashed-dotted lines), and the adiabatic model (blue
dotted lines). The laser parameters are same as in Fig. 2.
Light-blue and light-yellow shaded areas show the temporal
regions of ionization and recombination, respectively.

Previous studies [26, 27] show that the reconstructed
ionization and return times using ω–2ω OTC fields are
consistent with the QO model when the Coulomb-free re-
trieval equations are used. This agreement indicates that
the extracted times lack Coulomb effects. This is also
reflected by the fact that the optimal phases obtained
from TDSE and SFA match well in Fig. 2. Figure 3(a)
shows the times extracted via the Coulomb-free retrieval
equations, i.e., using Eqs. (11), (14), (15) with ∆vy ≡ 0,
in the case of ω–2ω fields. Indeed, the times from TDSE
agree closely with the real parts of the saddle-point times
from the QO model. For completeness, the figure shows
also the results from the simple man’s model, which are
significantly different.

The retrieved ionization and return times using the
Coulomb-corrected equations [Eqs. (7), (11), (14), (15)]
are shown in Fig. 3(b). While the return times are almost
unchanged, the ionization times are shifted by roughly 30
attoseconds to earlier times. To assess these results, we
compare with three different models that quantify the
influence of the Coulomb interaction on the times when
only the fundamental field is considered: a full descrip-
tion of the classical model (CM) and the analytical R-
matrix (ARM) theory is given in Refs. [33, 35, 36]; the
details of the adiabatic model are given in the appendix.
Besides the specific results shown below, we have checked
that there is good agreement between the models in the
region of Keldysh parameters γ < 1. For the ionization
time (light blue shaded area in the left part of the plot),
the results from CM, ARM, and the adiabatic model
agree very well with each other. These models indicate
that the attractive Coulomb force shifts ionization by
about 35 attoseconds to earlier times. The match with

 TDSE -4.6

Ionization Recombination

FIG. 4. Ionization and return times from TDSE with an
ω–4.6ω field (blue stars) compared to ARM (greed dashed
lines), QO (black lines) and the simple man’s model (light-
gray dashed lines).
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the Coulomb-corrected ω–2ω TDSE results is particu-
larly good at high harmonic orders. At lower harmonic
orders, the match is still good with the two-color results
being a few attoseconds behind the model predictions.
For the return time (light yellow shaded area in the right
part of the plot), we find: (i) the TDSE nearly coincides
with the adiabatic model and the QO model; (ii) ARM
theory shows a shift of 3-10 attoseconds when compared
to the QO model, which was already reported in Ref. [33];
(iii) the time shift of the CM varies between ∼10 and ∼45
attoseconds, decreasing with increasing harmonic order.
Overall, the return time is less affected by the Coulomb
potential than the ionization time. In view of ARM the-
ory being a quantum-mechanical model that includes the
Coulomb interaction both in the under-barrier motion
and in the subsequent unbound motion, it can be con-
sidered as the most accurate of the three models. This is
consistent with the good agreement between ARM theory
and the two-color TDSE for the return time. The CM
and the adiabatic model, on the other hand, although be-
ing slightly less accurate, have the benefit of providing a
simple interpretation of the Coulomb shift: the electron
must appear earlier so that the attractive Coulomb force
is compensated by additional field acceleration [35, 36].
Overall, we can conclude that the Coulomb correction
for the OTC method is reasonable and that the modified
equations successfully reveal the Coulomb time shift.

We also apply the modified retrieval equations to
the case of high-frequency streaking. Figure 4 displays
the times obtained from TDSE data via the Coulomb-
corrected scheme with an ω–4.6ω field, shown as blue
stars. Obviously, both ionization and return times are in
line with the ARM results. In our previous work [35],
we found that, even without the Coulomb correction,
the high-frequency OTC method is able to measure the
Coulomb time shift well, see Fig. 2 in Ref. [35]. When
the Coulomb correction is included, our results show that
both low and high streaking frequencies can be used to
perform an accurate measurement.

V. CONCLUSIONS

In summary, we have modified the OTC scheme for
probing ionization and return times in HHG by employ-
ing Coulomb-corrected Newtonian trajectories. From a
measurement of the harmonic intensity and the y-to-x
amplitude ratio as a function of the two-color delay, the
times can be retrieved. Compared to the Coulomb-free
displacement gate and velocity gate in Refs. [26, 27], the
modified scheme correctly recovers the Coulomb shift of
the ionization time in HHG and therefore it can be con-
sidered more reliable. The correctness of the Coulomb
shift retrieved from TDSE results is shown by the com-
parison with three different models that all give similar
results for the ionization time. One of these models is
the analytical R-matrix theory, first proposed and used
in [33] to evaluate the Coulomb shifts. While the re-

quired experimental observables are the same as in the
OTC scheme of [26, 27], the analysis introduced in the
present work differs in the equations that are used to ex-
tract the ionization time. The success of the scheme holds
no matter whether a low or high streaking frequency is
used. While the high-frequency streaking method (probe
frequencies of about 4ω or higher) works well even with-
out the modification of the retrieval equations, as shown
in [35], the “low-frequency method” (ω–2ω) needs the
Coulomb modification. We note that the ω–2ω method
is easier to use in an actual experiment. It is important
to note that the Coulomb correction in the time-retrieval
equations refers to the component of the electron motion
along the probe field, which is orthogonal to the strong
fundamental driving field, whereas the Coulomb shift of
the ionization time is due to the Coulomb effect on the
motion along the fundamental field. In this sense, the
probe scheme makes no assumptions about the motion
along the fundamental field. In practice, applying the
Coulomb-corrected scheme is not significantly more diffi-
cult than the original scheme. Experimentally, it is chal-
lenging to measure the absolute value of the two-color
delay as one typically measures only the variation of the
optimal phases with harmonic order. In this case, ad-
ditional assumptions are needed to obtain the ionization
time, see [26]. The same can be done in combination with
the scheme presented here. Hence, we conclude that the
proposed scheme is well suited to reveal the Coulomb
shift of the ionization time in an experiment.
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APPENDIX: ADIABATIC MODEL

In this appendix, we describe the adiabatic model for
the Coulomb effect on the ionization and return times of
HHG. Here, only the linearly polarized fundamental field
Ex(t) is considered,

Ex(t) = −∂Ax(t)

∂t
= E0 cos(ωt) (A1)

with the vector potential Ax(t) = −E0 sin(ωt)/ω. In the
model, the electron travels along a classical trajectory be-
tween the real times τi (ionization time) and τr (return
time). The term “adiabatic” refers to the initial condi-
tions of the trajectories: (i) the initial position is chosen
as the tunnel exit in the static-field limit of tunneling
through a triangular barrier; (ii) the Coulomb potential
is taken into account by choosing a nonzero initial ve-
locity equal to the Coulomb-induced momentum change
acquired by an outgoing electron under the assumption
of a static electric field. In detail, the electron trajectory
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starts at the tunnel exit xi = −Ip/Ex(τi) and it ends
at the position xr = 0, since recollision with the parent
ion is required for HHG. Except for the above-mentioned
choice of initial velocity, the Coulomb force is neglected
so that the displacement between τi and τr can be ex-
pressed as

xr − xi =

∫ τr

τi

[px(τi, τr) +Ax(t)] dt (A2)

with the canonical momentum

px(τi, τr) =
xr − xi
τr − τi

− 1

τr − τi

∫ τr

τi

Ax(t) dt. (A3)

In terms of the canonical momentum, the initial velocity
at τi is

vx(τi) = px(τi, τr) +Ax(τi) (A4)

and the final velocity at τr is

vx(τr) = px(τi, τr) +Ax(τr). (A5)

The initial velocity is set equal to the adiabatic Coulomb-
induced velocity change along the x axis [44, 50]

vx (τi) = α
πEx(τi)

(2Ip)
3/2

. (A6)

where α denotes the Coulomb interaction strength: α = 1
is the case of the full Coulomb interaction; α = 0 rep-
resents the Coulomb-free case. For α = 0, we denote
the ionization and return times as τ0i and τ0r . In order
to generate the harmonic frequency Ω, the electron must
return with the velocity

vx(τr) = vr =
√

2 (Ω− Ip), (A7)

where we choose a positive sign, assuming that the elec-
tron returns from the negative side. This implies that
the field at the ionization time is positive, Ex(τi) > 0.

From Eqs. (A4),(A5),(A6),(A7), we derive that, to first
order in the Coulomb interaction, the ionization and re-
turn times must change (relative to the Coulomb-free

case) by dτi and dτr that satisfy

dvx (τi) = α
πEx(τ

0
i )

(2Ip)
3/2

=

∂px
∂τi

∣∣∣∣
τ0
i ,τ

0
r

dτi +
∂px
∂τr

∣∣∣∣
τ0
i ,τ

0
r

dτr +
∂Ax(τi)

∂τi

∣∣∣∣
τ0
i

dτi, (A8)

and

dvx (τr) = 0 =

∂px
∂τi

∣∣∣∣
τ0
i ,τ

0
r

dτi +
∂px
∂τr

∣∣∣∣
τ0
i ,τ

0
r

dτr +
∂Ax(τr)

∂τr

∣∣∣∣
τ0
r

dτr. (A9)

Solving Eqs. (A8) and (A9), we obtain the Coulomb-
induced ionization time shift

dτi =− απ

(2Ip)
3/2

×(
τ0r − τ0i

)
Ex(τ

0
r ) + vr

(τ0r − τ0i )Ex(τ0r ) + vr +
IpĖx(τ0

i )Ex(τ0
r )

E3
x(τ0

i )

(A10)

and the return time shift

dτr =
απ

(2Ip)
3/2

×

IpĖx(τ
0
i )/E

2
x(τ

0
i )

(τ0r − τ0i )Ex(τ0r ) + vr +
IpĖx(τ0

i )Ex(τ0
r )

E3
x(τ0

i )

. (A11)

The terms involving the time derivative of the field orig-
inate from

∂xi
∂τi

∣∣∣∣
τ0
i

= Ip Ėx(τ
0
i )/E

2
x(τ

0
i ). (A12)

If the tunnel exit is instead chosen independent of the

ionization time, i.e., ∂xi

∂τi

∣∣∣
τ0
i

= 0, we arrive at the simple

adiabatic correction dτi = −απ/ (2Ip)3/2 used in [35] and
vanishing return time shift dτr = 0. Compared to the
simple adiabatic correction, the ionization time obtained
from Eq. (A10) is shifted to slightly earlier values with
the difference varying between ∼ 2 attoseconds and ∼ 7
attoseconds.
Finally, the actual ionization and return times of the

adiabatic model are obtained by adding the shifts dτi
and dτr to the values obtained from the Coulomb-free
QO model.
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[14] D. Faccialà, S. Pabst, B. D. Bruner, A. G. Ciriolo,
S. De Silvestri, M. Devetta, M. Negro, H. Soifer, S. Sta-
gira, N. Dudovich, and C. Vozzi, Probe of multielectron
dynamics in xenon by caustics in high-order harmonic
generation, Phys. Rev. Lett. 117, 093902 (2016).

[15] V. A. Birulia and V. V. Strelkov, Spectral caustic in two-
color high-order harmonic generation: Role of Coulomb
effects, Phys. Rev. A 99, 043413 (2019).

[16] M. Lein, Attosecond probing of vibrational dynamics
with high-harmonic generation, Phys. Rev. Lett. 94,
053004 (2005).

[17] S. Baker, J. S. Robinson, C. Haworth, H. Teng, R. Smith,
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