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Abstract

Numerical methods for calculating strong-field, nonperturbative electron dynamics
are investigated. Two different quantum-mechanical approaches are discussed: the
time-dependent Schrödinger equation and time-dependent density functional the-
ory. We show that when solving the time-dependent Schrödinger equation, small
errors in the initial ground-state wave function can be magnified considerably dur-
ing propagation. A scheme is presented to efficiently obtain the ground state with
high accuracy. We further demonstrate that the commonly-used absorbing bound-
ary conditions can severely influence the results. The requirements to the boundary
conditions are somewhat less stringent in effective single-particle approaches such
as time-dependent density functional theory. We point out how results from accu-
rate wave-function based calculations can be used to improve the density functional
description of long-ranged, nonlinear electron dynamics. We present details of a
method to reconstruct, numerically, the full, unapproximated, Kohn-Sham poten-
tial from the density and current of the exact system.
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1 Introduction

The rapid progress in laser technology over the past decade has opened up
a new realm of experimental possibilities. The strengths of the electric fields
that can be generated by pulsed lasers are comparable to the strength of the
field that an atomic nucleus exerts on its electrons. At such field strengths,
nonlinear and nonperturbative electron dynamics can be probed. This creates
new possibilities in materials processing and allows us to deepen our under-
standing of the fundamentals of light-matter interaction as well as to study
electron correlation on a new, dynamical scale.

Situations in which both electron correlations and nonperturbative dynamics
are important represent a great challenge to theory. Despite remarkable the-
oretical achievements [1–9], theory overall could not fully keep pace with the
experimental advances. Whereas in ground-state electronic structure theory,
ab initio or first-principles calculations are a standard and reliable tool to com-
plement experimental investigations, the situation is different in the realm of
strong-field excitations. Here, one frequently has to resort to simplified mod-
els instead of dealing with the full Hamiltonian. This is due to the much
higher computational cost of fully time-dependent calculations. The strong,
low frequency lasers typically used in experiments lead to large amplitude
motion of the electrons which covers extended regions of space. Therefore,
the techniques employing localized Gaussian- or Slater-type orbitals, which
make many ground-state calculations feasible, cannot be used for describing
the dynamics.

The numerical methods of choice for describing nonperturbative dynamics are
grid-based real-space approaches. The discretization of the wave function or
orbitals on a mesh allows for an unbiased representation so that the electronic
density can spread to all regions of space and is not centered at certain pre-
determined points as with localized basis sets. Furthermore, real-space meth-
ods allow for a flexible and straightforward treatment of boundary effects, e.g.,
via absorbing boundary conditions.

When one considers the physics of the problem of electrons in strong-fields,
the most obvious and conceptually straightforward approach is to solve the
time-dependent Schrödinger equation, e.g., by the above-mentioned real-space
methods. When the time-dependent many-particle wave function has been de-
termined, all observables can readily be computed from it. The disadvantage of
this approach is that obtaining the correlated time-dependent wave-function in
three-dimensional coordinate space is already a computationally overwhelming
task for a two-electron system [9]. Even with further rapid advances in com-
puter technology, it is unlikely that the dynamics of many-electron systems
can be studied ab initio in the near and not-so-near future.
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A completely different approach to quantum-mechanical dynamics is offered
by time-dependent density functional theory (TDDFT) [10,11], which recasts
the many-body problem into an effective single-particle picture (see section
4.1). Since the fundamental variable in TDDFT is just the time-dependent
density and since the calculation of the many-particle wave function is com-
pletely avoided, TDDFT can be computationally much more efficient than
wave-function based quantum mechanics. It is one of the very few theories
which have a chance to provide a first principles description of nonperturba-
tive many-electron dynamics.

While TDDFT offers many possibilities, it has a serious drawback. Just like
ground-state DFT, TDDFT, in principle, is an exact theory, but in practice,
the exchange-correlation potential vxc(r, t) which takes into account the many-
body effects is not known exactly and must be approximated. The accuracy
of TDDFT calculations depends sensitively on this approximation. Whereas
“standard” approximations like the time-dependent local-density approxima-
tion (TDLDA) [10,12] work well for some tasks, like describing excitations in
metal clusters [13–15], they dramatically fail for others [16]. In order to turn
TDDFT into a reliable tool for calculating strong-field dynamics, improved
approximations for the exchange-correlation potential must be developed. An
important step towards this goal is revealing and understanding the funda-
mental properties of the exact vxc(r, t).

The aim of this manuscript is to discuss numerical aspects and implications
of both approaches to strong-field dynamics, i.e., wave-function theory and
TDDFT. Furthermore, we show how results of highly accurate wave-function
calculations can be used to develop a deeper understanding of TDDFT and
the properties that good approximations for the unknown exact vxc(r, t) must
have. The manuscript is composed as follows: In section 2 we briefly review
TDDFT and the problem of correlated-electron dynamics in the Helium atom,
and discuss the numerical model and tools we employ. In section 3.1 we focus
on how to calculate the time-dependent correlated wave function. We demon-
strate that small errors in the ground state, from which the dynamics starts,
can increase considerably during propagation of the wave function. An efficient
scheme for calculating the ground state with high accuracy is presented. In
section 3.2 we discuss the influence of boundary conditions in wave-function-
based calculations and in TDDFT. It is shown that the widely used absorbing
boundary conditions must be handled with care and that this is in particular so
when the correlated wave function is used. A method for obtaining insight into
the correlation effects in TDDFT from results of accurate wave function cal-
culations by constructing the exact Kohn-Sham potential and pair-correlation
function is discussed in section 4. We finally offer conclusions in section 5.
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2 Concepts and problems

2.1 Time-Dependent Density Functional Theory

The fundamental idea of Kohn-Sham density functional theory is to map the
real system of interacting electrons onto an auxiliary noninteracting system –
the Kohn-Sham system – which yields the same density [10]. For an N -electron
system, the density is constructed from auxiliary Kohn-Sham orbitals ϕi(r, t)
according to

n(r, t) =
N
∑

i=1

|ϕi(r, t)|
2 , (1)

and the orbitals themselves are obtained as solutions of the Kohn-Sham equa-
tions,

[

−
h̄2

2m
∇2 + vs[n](r, t)

]

ϕj(r, t) = ih̄
∂

∂t
ϕj(r, t) , (2)

where m is the particle mass. In these effective single particle equations, the
Kohn-Sham potential vs is chosen such that the noninteracting density equals
the interacting one, and all observables can then (in principle) be calculated
from the time-dependent density. The Kohn-Sham potential

vs(r, t) = vext(r, t) + vh(r, t) + vxc(r, t) (3)

consists of the external potential vext, the Hartree potential, which is equal
to vh = e2

∫

n(r′)/|r − r′| d3r′, and the exchange-correlation potential vxc. The
latter is the crucial, nontrivial part of vs that incorporates the many-body
effects into the theory. An exact expression for this potential is not known,
and it must therefore be approximated in practical TDDFT calculations.

2.2 Strong-field double ionization of the Helium atom

Double ionization of the Helium atom in the strong field of a pulsed laser
is one of the paradigm examples for strong-field phenomena. Instead of the
sequential ionization that one would naively expect, i.e., the two electrons
leave the nucleus independently, experiments [17] show a double ionization
rate that is orders of magnitude larger than the rate expected from a sequential
process. Intensive research, for example in references [3,18], clarified that the
recollision mechanism [19] is responsible for the enhanced ionization with its
famous “knee structure” [17]: An electron is first ionized and then accelerated
back to the nucleus by the field of the laser. There it collides with the second
electron and both leave the nucleus. A situation like the one just described
must be treated nonperturbatively.
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As discussed in the introduction, TDDFT is one of the very few approaches
that offer a chance to calculate correlated, nonperturbative electron dynamics
from first principles. Thus, it is a natural idea to employ TDDFT to study the
question of enhanced double ionization. So far, however, all attempts in this
direction have failed completely. Careful and detailed investigations [4,5,16]
revealed that none of the functionals for vxc(r, t) that are commonly employed
in TDDFT calculations reproduces the characteristic knee shape in the inten-
sity dependence of the double-ionization probability. Very recently, arguments
have been put forward that offer an explanation for these failures [20,21].

Obtaining the double-ionization probability from a TDDFT calculation is a
nontrivial task for two reasons. First, in order to obtain an accurate density,
a good approximation for vxc(r) is needed. Second, the density functional for
the ionization probability is not known [16]. Both of these issues must be
addressed in order to develop a reliable and accurate TDDFT description of
ionization processes. In the following we discuss one method for investigating
these issues.

It has recently been demonstrated that important properties of the time-
dependent exchange-correlation potential can be extracted from accurate cor-
related wave-function calculations for a one-dimensional model of the Helium
atom [20]. The essential idea in this approach is to extract the exact exchange-
correlation potential from the exact time-dependent density by inverting the
time-dependent Kohn-Sham equations.

The use of the one-dimensional atom is necessary, because of the extreme com-
putational burden of nonperturbative calculations: As discussed in section 3,
very large grids are needed to capture the long-ranged dynamics that is asso-
ciated with ionization. The use of this model is well justified for our purposes
since a strong external electrical field forces the electrons to predominantly
move one-dimensionally, namely in the direction of the field. The Hamiltonian
for the one-dimensional Helium atom reads

H =
p2

1

2me
+

p2
1

2me
+ Ve(r1 − r2) − 2Ve(r1) − 2Ve(r2) + Vf(r1) + Vf (r2), (4)

where me is the electron mass. Vf is the potential due to the externally applied
field, i.e., in our case a strong field that leads to an ionization process. Ve(r)
is the softened Coulomb potential,

Ve(r) =
EH

√

x+ (r/a0)2
, (5)

where EH denotes the energy unit in Hartree atomic units, i.e., EH = 4.360×
10−18 J in SI units.

The softened Coulomb-interaction Ve with softening parameter x has been
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introduced above because the true, singular Coulomb-interaction cannot be
used in one-dimensional calculations: the electrons could never pass the sin-
gularities. Since there is no unique way to fix the parameter x, one possible
strategy would be to fit x to some experimental results. However, our inves-
tigations are concerned with fundamental effects that do not depend on the
precise value of x and the results that we discuss in this manuscript do not
depend qualitatively on the value of x. Consequently, we use the “canonical”
value and set x = 1 [1].

The one-dimensional model has been extensively tested and it has been demon-
strated that it captures the essential physics of the Helium double-ionization
process [1,4–6]. Therefore, in all of the following discussions, we will consider
the Hamiltonian in equation (4).

3 Computational methods

In the following we investigate the dynamics that result from equation (4)
in two different ways. On the one hand, we consider the solution based on
the time-dependent, correlated wave function. On the other hand, we look
at the Kohn-Sham system with some approximation for vxc. The initial state
of the system is always the ground state, as the initial state of a system in
an experiment is typically the ground state. The wave function is propagated
using the split-operator method [24]. Derivatives are evaluated using Fourier
transforms calculated with the fftw library [22]. A gridspacing of 0.25 a0 and
a time-step size of 0.025 h̄/EH were used.

3.1 The influence of the initial state on strong-field dynamics

3.1.1 The importance of inital-state convergence

If a system exposed to a strong field is investigated numerically, then small
errors can be magnified considerably during the numerical propagation in
time. These problems can stem from errors in the initial state, or from errors
introduced by insufficiently accurate propagation.

Calculating the ground state accurately can be tedious, but it is important
for the following reason: An inaccuracy in the ground state means that con-
tributions from excited states are present in the initial configuration. If an
external field is applied, the exited states can be ionized more rapidly than
the ground state. Thus, if the initial state has significant contributions from
excited states, the dynamics will be dominated by these during the initial part
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Fig. 1. Time evolution without external field for the fully converged ground state
(full lines) amd an approximate ground state from the imaginary-time method with
time step 1h̄/EH (dashed lines). Shown is the electron density at the three times
t = 0, t = 16h̄/EH, and t = 32h̄/EH. Before the propagation, the two densities are
indistinguishable on the scale of this plot. After propagation, the fully converged
ground-state density appears unchanged, as it should be. However, the less accurate
ground-state density spread out over the whole grid although no field was applied.

of the simulation. Small errors in the ground state of the system may be ampli-
fied and/or significantly affect the results of calculations of some observables.
As a consequence, the propagation must begin from a ground state which has
been converged to such an accuracy that the dynamics which are of interest
are not at any time overshadowed by the contributions from excited states.

To illustrate these remarks, two approximate ground-state densities are plot-
ted in figure 1. One was found from the imaginary-time split-operator method
with a timestep of 1h̄/EH. The other is from a much more accurate ground
state. Both states were propagated in real time for 16h̄/EH and 32h̄/EH with
the split-operator method, using a time-step of 0.025h̄/EH. The resulting den-
sities after propagation are also shown in the figure. In the calculation that
starts from the less accurate ground state, a small amount of density is ionized
even though no field is applied. This is due to admixtures of excited states in
the initial density. In a strong alternating field, such as we wish to investigate,
this density might move through the atom repeatedly with high momentum.
The error in the density may be amplified through the same recollision mecha-
nism which causes the enhanced double ionization we are interested in. Thus,
inaccuracies in the initial state may swamp out the effect we are looking for.
Therefore, calculating the ground state accurately is very important and we
will investigate this issue in greater detail in the following.
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3.1.2 Obtaining the ground state by imaginary time propagation

Different ways can be followed in order to obtain the ground state accurately.
One of the most straightforward ones is the direct numerical diagonalization of
the Hamiltonian. However, for the very large grids needed for the description of
long-ranged perturbative dynamics, this is not the most efficient method. Al-
ternatively, the ground state may be found by evolving the system in imaginary
time [23]. The imaginary-time propagation method is based on the evolution
operator for a time step −i∆tı, which works on the wave function according
to

ψ(r,−it− ∆tı) = exp(−∆tıH/h̄)ψ(r,−it) . (6)

We use the index ı to distinguish the time step ∆tı in the imaginary-time
propagation from the the time step ∆t in the real-time propagation. For long
times, i.e., repeated application of this step, the wave function becomes domi-
nated by the eigenfunction of H with the smallest eigenvalue, the ground-state
eigenfunction.

The widely used split-operator method for calculating time evolution [24] may
be applied to imaginary time as well. It requires two Fourier transforms per
iteration and makes use of an approximation of the time-evolution operator
which has errors of third order in ∆tı.

The error in the ground state and the ground-state energy produced in this
scheme can be found from the eigenvalue equation,

exp(−E∆tı∆tı/h̄)φ∆tı = exp(−∆ıtT/(2h̄)) exp(−∆tıV/h̄)

× exp(−∆tıT/(2h̄))φ∆tı

= [exp(−∆tıH/h̄) +O(∆t3)]φ∆tı. (7)

Here, φ∆tı and E∆tı are the ground-state wave function and energy found
from the imaginary-time scheme with a time step of ∆tı, and T and V denote
kinetic and potential energy operators, respectively.

It is possible to expand φ∆tı and E∆tı in ∆tı,

φ∆tı = φ
(0)
∆tı + ∆tıφ

(1)
∆tı + ∆t2ıφ

(2)
∆tı +O(∆t3ı ) , (8)

E∆tı = E
(0)
∆tı + ∆tıE

(1)
∆tı + ∆t2ıE

(2)
∆tı +O(∆t3ı ) . (9)

Inserting these expansions into equation (7) and sorting orders in ∆tı, one
finds for the zeroth and first order terms

φ
(0)
∆tı = φ

(0)
∆tı , (10)

−E
(0)
∆tı∆tıφ

(0)
∆tı + ∆tıφ

(1)
∆tı = −H∆tıφ

(0)
∆tı + ∆tıφ

(1)
∆tı . (11)
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From equation (11) it follows that Hφ
(0)
∆tı = E

(0)
∆tıφ

(0)
∆tı, i.e., the zeroth order

terms correspond to the exact values E and φ:

φ
(0)
∆tı = φ , (12)

E
(0)
∆tı = E . (13)

By substituting these results into the second order of equation (7) and dividing
by (∆tı)

2, one derives

E
(1)
∆tıφ+ (E −H)φ

(1)
∆tı = 0 . (14)

By taking the innerproduct of this equation with the ground state and the ex-
cited states and making use of the fact that φ(1) can be taken to be orthogonal
to φ one can find the first-order errors. From the innerproduct with the ground
state, one finds the linear error in the energy and from the innerproducts with
excited states, one finds the linear error in the wave function:

E
(1)
∆tı = 0 , (15)

φ
(1)
∆tı = 0 . (16)

By combining this with the third order of equation (7), one finally finds that

(E −H)φ
(2)
∆tı + [E

(2)
∆tı +O(1)]φ = 0 . (17)

Once again making use of the fact that the errors in the wave function are
orthogonal to φ and taking innerproducts, it is possible to derive that

E
(2)
∆tı = O(1) , (18)

φ
(2)
∆tı = O(1)φ . (19)

Here the error in the energy is found from the innerproduct with the ground
state and the error in the wave function is found from the innerproducts
with the excited states. Equation (18) shows that the error obtained in the
ground-state energy with the imaginary-time split-operator propagation is of
second order in the time step, although the error in the wave function due to
propagation for one time step is of third order. The smallest possible relative
error ε∆tı with which the ground state can be found in the imaginary-time
scheme with split propagation operator, for small time-step size, is related to
the time-step size by

ε∆tı ∼ ∆t2ı . (20)

This is illustrated in figure 2.

Apart from the error due to the split-operator method, there is also an error
in the ground state due to contributions from excited states that have not
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been fully damped out. This error can be defined as the relative contributions
to the calculated ground state that are orthogonal to the ground state φ∆tı

that would be found after infinitely many iterations with a time step ∆tı.
The rate of convergence, c, is the natural logarithm of the factor by which,
after many iterations, the error in the state is reduced each iteration. Let
the component of ψ that is orthogonal to the ∆tı ground state be written as
ψ⊥ = ψ − φ∆tı〈φ∆tı|ψ〉. The rate of convergence is then defined as

c = ln





(

〈ψ⊥(−it)|ψ⊥(−it)〉

〈ψ(−it)|ψ(−it)〉

)
1

2

(

〈ψ⊥(−it− ∆tı)|ψ⊥(−it− ∆tı)〉

〈ψ(−it− ∆tı)|ψ(−it− ∆tı)〉

)− 1

2



 .

(21)

The rate of convergence can be calculated by writing the wave function which
is propagated in imaginary time as a linear combination of the eigenstates
that one would find with the split-operator method with time-step size ∆tı.

ψ(r,−it) =
∑

j

cj(t)φ∆tı,j(r) , (22)

cj(t) = cj(0) exp(−tE∆tı ,j) , (23)

where E∆tı,j is the energy of the jth state and φ∆tı,j is the corresponding
eigenfunction. Contributions from higher excited states will decrease faster
than contributions from the first excited state and can be neglected for the
calculation of the rate of convergence. The error in the ground state can then
be written as

(

〈ψ⊥(−it)|ψ⊥(−it)〉

〈ψ(−it)|ψ(−it)〉

)
1

2

=
c1(t)

√

c0(t)2 + c1(t)2
. (24)

Except for the first few iterations, we have c1(t) � c0(t), because E1 > E0.
By substituting this in equations (21) and (24), one finds

c = ln

{

c0(t+ ∆tı)c1(t)

c0(t)c1(t + ∆tı)

[

1 +O

(

c1(t)
2

c0(t)2

)]}

≈ ∆tı(E1 − E0) . (25)

If a highly accurate ground state is desired, denoted by a small relative de-
viation ε from the exact ground state, the time step must be small enough
so that the smallest possible error ε∆tı from equation (20) does not exceed
ε. This can be troublesome, as for a smaller error, a smaller time-step size is
required, which leads to slower convergence by equation (25). By combining
equation (20) and equation (25), one may conclude from the rate of conver-
gence that the number of required iterations M is

M ∼ −ε
−1/2
∆tı log ε > −ε−1/2 log ε . (26)
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Fig. 2. The error in the ground-state energy obtained from the imaginary-time
scheme as a function of time-step size. The ground-state energy is −2.238EH. The
line is a fit and corresponds to 0.01985∆t2ı .

3.1.3 A linear algorithm

Imaginary-time propagation is not the only method for finding the ground
state. In principle, any operator which is strictly positive and strictly decreas-
ing in the eigenvalues of the Hamiltonian will do. One may use an operator
which meets these requirements and which can be implemented exactly, for
example because it is a finite-order polynomial in H. This would remove the
problem with the error dependence of the required number of iterations that
exists in the imaginary-time split-operator scheme. In a fully exact system,
however, such an operator cannot be constructed in any practical way. When
the wave function is calculated on a grid, on the other hand, the system has
a finite maximum energy (see below), and the eigenvalues of H are bounded
from above.

On a grid with finite spacing ∆x, the smallest representable wavelength is
λmin = 2∆x, which corresponds to a maximum wave vector 2π/λmin. Thus,
the maximum momentum component in a specific direction for each electron
is equal to pmax = h̄π/∆x. This sets an upper bound for the kinetic energy. If
the potential energy is bounded from above by Umax, an upper bound for the
total energy is found from the sum of the two upper bounds,

Emax =
Ndπ2h̄2

2me∆x2
+ Umax , (27)

where N is the total number of electrons and d is the number of dimensions.
Hence, the operator 1 − H/Emax is strictly positive and decreasing in the
eigenvalues of H. It can be used to replace the time-evolution operator in
equation (6) for finding the ground state. It is not used for this purpose very

11



often, as the maximum energy becomes very large for fine grids [31]. It is,
however, fully accurate, and, unlike the imaginary-time scheme, the practical
implementation is not subject to an expansion in a time-step size. It also
requires two Fourier transforms per iteration. The rate of convergence can be
shown to be equal to

c = ln
(

Emax − E0

Emax − E1

)

. (28)

For Emax � E1, this reduces to

c =
E1 − E0

Emax
. (29)

This is independent of the target error ε. Consequently, the number of iter-
ations required to find the ground state within an error ε is proportional to
− log ε.

3.1.4 Discussion and comparison

In general, wave functions exist which are left unaffected by the split operator
with a finite time step. Of these wave functions, the one with the lowest en-
ergy could be considered to be the “ground state” of the split operator. The
most reliable end result would be obtained if one could start from exactly this
“ground state”. One might think that the imaginary time-propagation oper-
ator with the same time-step size could produce this exact “ground state” of
the real-time propagation operator. However, the imaginary-time propagation
split operator makes a different error in the exact ground state of order ∆t2ı .
The ground state found from the imaginary-time propagation is not mapped
onto itself when propagated with the real-time-propagation operator with the
same time-step size. Here the error is of order ∆t3, where ∆t is the time-step
size of the real-time propagation. At each time step a new error of order ∆t3 is
introduced. Because the operator must be applied a number of times propor-
tional to 1/∆t in order to cover a given interval in time, the error in the final
wave function, compared to one from exact propagation of the same initial
state, is of order ∆t2. The errors created by finite steps ∆t and ∆tı have to
be analysed independently of each other.

To decide which of the two methods described above is more efficient for
finding the ground state, we substitute equation (20) into equation (25) and
compare the result with equation (29). One concludes that the target accuracy
for which the two methods are equally fast obeys the proportionality

ε ∼
1

E2
max

. (30)
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The linear scheme speeds up the search for the ground state if the target error
ε is small. In our experience, the most efficient way to find the ground state is
to start by first converging roughly using imaginary-time propagation with a
large time step, and then continuing with the linear scheme. Of course, it must
be noted that any subsequent propagation must be done with a time-step size
small enough not to introduce an error that would significantly outweigh the
error due to the ground state scheme. Finally, we note in passing that this
scheme could also be used to accelerate the search for highly accurate excited
states.

3.2 Absorbing boundary conditions

When a finite system is exposed to a strong, ionizing external electrical field,
a significant fraction of the density may reach the boundary of the grid during
the simulation. It is imperative to use boundary conditions which take care
of this density without severely distorting the other properties of the system.
Periodic boundary conditions are often out of the question for systems with
strong fields since density may be accelerated indefinitely. Reflecting bound-
ary conditions are also inadequate, as they reflect the density, which may be
moving at high velocity, back towards the center of the system.

A common choice, which, as we will see, is a least of evils, is to use boundaries
which absorb the density that reaches them. This can be implemented in
several ways. In the split-operator context, the most convenient method is to
add an imaginary term to the potential near the edge of the system in the time
propagation [25]. In the following we will show that such boundary conditions
may still affect the dynamics of the rest of the system.

The first and most obvious drawback of absorbing boundary conditions is that
the dynamics at the boundary are irreversible. If the density oscillates back and
forth, too tightly placed absorbing boundaries obviously can have a dramatic
influence because they can remove density which in an exact treatment would
return to the vicinity of the system in the next half cycle.

3.2.1 Single-particle orbital description

In methods based on single-particle orbitals, such as TDDFT or the Hartree-
Fock method, the dynamics can be influenced by absorbing boundary condi-
tions even in the case where density just moves away from the system (i.e.
without rescattering). This is due to the fact that beyond the boundary there
is no longer any density to interact with the density near the boundary. The
behavior of the remaining density is modified compared to a system with
boundaries that are further away. If the parts of the density that touch the
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boundaries are removed, the remaining density then “feels” the missing repul-
sion and is accelerated toward the boundary, where it, too, is removed.

An example of this effect in a realistic simulation is depicted in figure 3. It
shows two snapshots of densities that result from Hartree-Fock calculations
[26] of the one-dimensional model Helium atom which has been subjected to a
static field that has been linearly ramped up. The field is cut off at a distance
of 35a0 from the nucleus to prevent problems with strongly accelerated elec-
trons. The boundary was implemented by adding an imaginary component to
the potential, which is 0 everywhere except at the boundary, where it decreases
from 0 to minus infinity as 4 ln(cos((r− r0)/20a0)), where r0 is the position of
the boundary. The full line shows the density with an absorbing boundary at
390a0 after 128h̄/EH has elapsed. The dashed line shows the same situation
with the absorbing boundary at 185a0, i.e., at a closer distance but at one
which may naively still be considered “far away”. Due to the Coulomb inter-
action, the density that is first to follow the field and move outwards repels
the density that stays behind. In the system with the nearby boundary, some
of the “first” density has been absorbed early and thus part of this interaction
has disappeared. As a consequence, in the simulation in which the boundary is
closer to the atom, the density moves into the boundary faster than it moves
through a point at the same distance from the atom in a larger system. The
errors introduced by this are noticeable even close to the atom, e.g., around
r = −20a0. The average number of ejected electrons is about 0.54 electron for
the large system and 0.58 for the system with the closer boundary.

In the time-dependent Hartree-Fock or Kohn-Sham scheme, the observed effect
can be viewed as a consequence of the particular structure of the equations.
The electron-electron interaction appears in the equation in the form of a
term that is nonlinear in the orbital so that a change in the orbital will also
modify the effective potential. Therefore, the effect is, as our results show,
rather large.

3.2.2 Correlated wave functions

In Kohn-Sham theory, the density by definition is obtained from equation (1),
and the densities shown in figure 3 were calculated in this way. Equation (1)
follows from taking the expectation value of the number-density operator
∑N

j=1 δ(r−rj) with a single Slater determinant, and there is nothing surprising
about it. However, when absorbing boundary conditions are used, great care
has to be taken in evaluating the density. In the following we illustrate this
point by example of our model system.

In our Helium atom, the two electrons occupy the same spatial orbital ϕ(r, t).
Absorbing boundaries modify the orbital at the boundary only. Thus, when the
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Fig. 3. Hartree-Fock results for the model atom in a static electric field that is
linearly ramped up from field strength 0EH/(ea0) at t = 0h̄/EH to a constant
value of 0.141EH/(ea0), which is reached at t = 12h̄/EH. To prevent problems with
strongly accelerated electrons, the field is cut off at r = −35a0. The density is
plotted as a function of the position after t = 128h̄/EH for two different positions
of the absorbing boundary, −390a0 (full lines) and −185a0 (dotted lines). With the
nearby boundary, approximately 0.6 electron has been removed. The inset is an
enlargement of the peak in the density near the nucleus. The average number of
ejected electrons is about 0.54 for the calculation with the boundary further out
and 0.58 with the closer boundary.

density is computed from equation (1), n(r, t) = 2|ϕ(r, t)|2, the direct effects
of absorption on the density are restricted to the boundary region. Changes
of the density in the inner region are possible only through the indirect effects
discussed in section 3.2.1.

However, let us carefully examine the process of calculating the density as the
expectation value

n(r, t) =
∫

d3r1

∫

d3r2 ϕ
∗(r1, t)ϕ

∗(r2, t)
2
∑

j=1

δ(r − rj)ϕ(r1, t)ϕ(r2, t)

= 2|ϕ(r, t)|2
∫

ϕ∗(r′, t)ϕ(r′, t) d3r′ (31)

in the presence of absorbing boundary conditions. When the orbital reaches
the absorbing boundaries, the integral on the right-hand side of equation (31)
will take a value of less than one. This has the consequence that the density
at every point in space will be reduced by this factor, i.e., absorption at the
boundary modifies the density not only at the boundary, but everywhere. Of
course, this is a numerical artefact and for the case of the wavefunction being
a single Slater determinant, one knows how to avoid it: By using equation (1)
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one implicitly sets the integral to the value 1 and, thus, can easily take into
account that normalization should not have changed.

However, for a numerically calculated correlated wavefunction one cannot sim-
ply decompose the corresponding density into a sum over orbitals. Therefore,
the above mentioned simple way of avoiding the just discussed numerical arte-
fact caused by the absorbing boundaries cannot be used. One could avoid the
problem by somehow taking into account in the normalization the part of the
wavefunction which “has left the grid”. Typically, however, this is not done
and, therefore, one has to be prepared for unphysical effects as soon as density
is absorbed at the boundary.

An example of this effect is shown in figure 4. In the correlated (quasi exact)
calculation in a static field the density near the nucleus is simultaneously re-
duced when density is removed at the boundary. By comparing the results
shown in figure 3 to those of the correlated calculations shown in figure 4 one
can see that the density remaining close to the nucleus is much more affected
by the absorbing boundaries in the correlated calculation. The average num-
ber of ejected electrons in the correlated system is about 0.9 electron with
the far away boundaries and 1.4 with the closer boundaries. In the uncor-
related calculations, with nearby boundaries the density at the nucleus is in
better qualitative agreement with the results for the system with far-away
boundaries.

This demonstrates that when interpreting calculations based on the correlated
wave function, one has to keep in mind that absorbing boundary conditions
can severely affect many observables even when relatively small amounts of
density have been absorbed. Hence, absorbing boundaries must be used with
great care in these cases.

4 New insight into the Kohn-Sham world

4.1 Reconstructing the Kohn-Sham potential

The propagation of correlated wave functions is time consuming and mem-
ory intensive. Moreover, as demonstrated above, the electron density calcu-
lated from a correlated wave function is very sensitive to absorbing bound-
aries. Computational approaches based on single-particle orbitals suffer much
less from these problems. Yet, mean-field methods such as the Hartree-Fock
method or the single-active-electron approximation clearly miss the effects
that are of interest in correlated dynamics. Kohn-Sham density functional the-
ory is very attractive since it has the potential to incorporate correlation effects

16



 1e-04

 0.001

 0.01

 0.1

 1

-250 -200 -150 -100 -50  0  50

r

n(
r)

far boundary
close boundary

 0.1

 1

-2  0  2

n(
r)

Fig. 4. Results for an exact, i.e., fully correlated calculation under the same condi-
tions as in figure 3. With the nearby boundary, about 1.1 electron has been removed.
In the inset the difference in the density near the nucleus is very clear. The average
number of ejected electrons is about 0.9 electron with far-away boundaries and 1.4
with the closer boundaries.

into a framework that uses single-particle orbitals. However, as discussed in
the introduction, better approximations for the exchange-correlation potential
vxc(r, t) are needed before TDDFT will be a reliable tool for studying processes
such as correlated double ionization. Most previous applications of TDDFT
employed either the adiabatic local-density approximation or exchange-only
potentials. Both of these methods are known to fail in predicting nonsequential
double-ionization yields. A closer look reveals that not even single-ionization
yields are predicted accurately by the exchange-only approach [7].

Little is known about exact properties of the full exchange-correlation poten-
tial. In this section we elaborate on a recently suggested way [20] how insight
into the Kohn-Sham potential can be gained: the exact exchange-correlation
potential is reconstructed from the quasi-exact time-dependent density. Simi-
lar techniques of reconstructing the Kohn-Sham potential were presented ear-
lier by other workers [27,28], but not in the context of strong-field ionization.
We note that even in the simplest correlated atom, the Helium atom, the calcu-
lation of the exact three-dimensional time-dependent density for an ionization
process is currently out of reach due to the associated tremendous compu-
tational effort. The reconstruction of the Kohn-Sham potential is therefore
restricted to model systems such as the one-dimensional Helium atom that
we consider in this work. After having obtained the exact Kohn-Sham poten-
tial, it can be compared to existing approximations, so that deficiencies of
these approximations are identified and information for the development of
new exchange-correlation functionals can be inferred.

Our approach exploits the Runge-Gross theorem [29] which states that the
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Kohn-Sham potential is determined up to a purely time-dependent constant
by the initial Kohn-Sham state and the time-dependent density. The initial
Kohn-Sham state must be chosen such that it reproduces the initial density, as
well as the first time derivative of the density [30]. We consider here only two-
electron systems starting from the ground state. We take the natural choice
that the Kohn-Sham initial state consists of two electrons with opposite spins
in the same spatial orbital. In this case, the two electrons will be described at
all times by one orbital ϕ(r, t). Working with only one orbital simplifies the
calculation substantially, since the density is given simply by (one-dimensional
notation is used in this section)

n(r, t) = 2|ϕ(r, t)|2 . (32)

We take the density as given from the exact two-electron calculation so that
we can immediately write

ϕ(r, t) =

(

n(r, t)

2

)1/2

eiα(r,t) . (33)

where the phase α(r, t) remains to be determined. The phase is related to the
current in the Kohn-Sham system,

js(r, t) =
h̄

m
n(r, t)

∂

∂r
α(r, t) . (34)

By inserting the above ansatz for the orbital, equation (33), into equation (2),
we find for the imaginary part of the Kohn-Sham potential

Im vs(r, t) =
h̄

2n(r, t)

(

∂n

∂t
+

∂

∂r
js(r, t)

)

. (35)

The imaginary part must vanish, so the density and Kohn-Sham current must
satisfy the continuity equation,

∂n

∂t
+

∂

∂r
js(r, t) = 0 . (36)

The continuity equation holds also for the exact current j(r, t) in the inter-
acting system. Therefore, we have ∂

∂r
js(r, t) = ∂

∂r
j(r, t). Taking into account

that the currents must asymptotically go to zero for the case of the finite one-
dimensional system considered here, it is thus obvious that the Kohn-Sham
current must equal the current in the interacting system. We would like to re-
call that presently it is an open question whether this statement holds also in
general three-dimensional systems. In the case considered here, we can replace
in equation (34) the Kohn-Sham current by the true current, which allows to
calculate the phase α from the exact density and current up to an arbitrary
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time-dependent constant,

∂α(r, t)

∂r
=
m

h̄

j(r, t)

n(r, t)
. (37)

Knowing the phase, we construct the Kohn-Sham orbital, equation (33). From
the time-dependent Kohn-Sham orbital we can calculate the Kohn-Sham po-
tential. Naively, one might apply equation (2) and use a finite-difference method
to calculate the time derivative. The momenta could be calculated by using
a finite-difference method, or by using fourier transforms. However, since the
split-operator method is used to propagate the two-electron wave function
in time, a more consistent and numerically more stable way to obtain the
Kohn-Sham potential is to invert the expression for the one-dimensional split-
operator wave-function propagation,

ϕ(r, t+∆t) = exp[−iT∆t/(2h̄)] exp[−ivs(r, t+∆t/2)∆t/h̄]

× exp[−iT∆t/(2h̄)] ϕ(r, t) . (38)

From this one finds that

vs(r, t+∆t/2) = −
h̄

∆t
arcsin Im

(

exp[iT∆t/(2h̄)]ϕ(r, t+ ∆t)

exp[−iT∆t/(2h̄)]ϕ(r, t)

)

+ k , (39)

where k is an arbitrary constant which can be adjusted to impose a boundary
condition on the potential. Typically, k is chosen to make vs vanish at infinity.

A numerical problem arises in the calculation of α and vs in the regions where
the density is small, for example far from the nucleus. In those regions, the
calculated two-electron density is not accurate and causes large errors due
to the denominators on the right-hand sides of equations (37) and (39). For
our present application, this is not a serious problem, as the density is always
sufficiently large in the areas of interest.

4.2 The pair-correlation function

For the reasons mentioned in section 2 we are interested in double-ionization
probabilities. One issue with the calculation of multiple-ionization probabil-
ities with TDDFT methods is the approximation of the ionization density
functional. Although the Runge-Gross theorem tells us that, in principle, the
multiple-ionization probabilities could be calculated exactly from the density,
for practical purposes the exact functionals are not known and so must be
approximated.

The ionization probabilities for no-, single-, and double ionization, denoted
by P0, P1, and P2 respectively, can be expressed in the joint probability den-
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Fig. 5. Cross-sections of the pair-correlation function in the ground state for several
positions of the reference electron. At s = 5.0 the joint probability density becomes
so small that the edges can no longer be calculated accurately. For reference the
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s and r, is also shown. The strange behavior for s = 5.0, around ±6a0, is due to
numerical inaccuracies related to the fact that the joint probability distribution and
the density both become very small.

sity ρ(r1, r2, t) of two electrons. In an N -electron system the joint probability
distribution can be found from the wave function through

ρ(r1, r2, t) = N(N − 1)

(

N
∏

i=3

∫

d3ri

)

ψ∗(r1, r2, . . . , rN , t)ψ(r1, r2, . . . , rN , t) ,

(40)

where the prefactor N(N − 1) is due to the fact that r1 and r2 may be the
positions of any two electrons. In a two-electron system, this reduces to

ρ(r1, r2, t) = ψ∗(r1, r2, t)ψ(r1, r2, t) + ψ∗(r2, r1, t)ψ(r2, r1, t) . (41)

An electron can be considered ionized if it has left a subset A of Rd which
surrounds the nucleus, e.g., in three-dimensional space a sphere with a radius
of a few bohrs. The no-, single- and double-ionization probabilities can then
be written as

P0(t) =
1

2

∫

A
d3r1

∫

A
d3r2ρ(r1, r2, t) , (42)

P1(t) =
∫

A
d3r1

∫

Rd\A
d3r2ρ(r1, r2, t) , (43)

P2(t) =
1

2

∫

Rd\A
d3r1

∫

Rd\A
d3r2 ρ(r1, r2, t) . (44)

All correlation in the Kohn-Sham system is mediated through vxc, and so the
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joint probability density cannot be extracted as easily as the single-particle
density. It can be intuitively represented by the pair-correlation function [16].
The pair-correlation function is defined, in this context, as

g(r1, r2, t) =
ρ(r1, r2, t)

n(r1, t)n(r2, t)
. (45)

In our singlet two-electron Hartree-Fock system, the pair-correlation function
would be equal to 1/2 for all r1 and r2. The ionization-probability functionals
can be directly related to the pair-correlation function.

So far, two approaches have been followed to calculate Helium ionization prob-
abilities in TDDFT. The first is to simply evaluate the probabilities from the
Kohn-Sham Slater determinant. This corresponds to using the Hartree-Fock
value g = 1/2. The main advantage of this procedure is that it is simple. The
main disadvantage is that is has been shown [5] that even with the exact den-
sity as input, these ionization probabilities differ noticeably from the exact
ones. Consequently, attempts were made [16] to construct better function-
als for the ionization probabilities by using approximate density functionals
[32,33] for the pair-correlation function. Numerically, it was found [16] that
using these functionals for g leads to ionization probabilities very similar to
the ones obtained with g = 1/2. Here, we outline an argument why this is to
be expected for a broad class of density functional models for g [34].

The above mentioned functionals for g are the sum of an exchange and a cor-
relation contribution, i.e., g(r1, r2) = gx(r1, r2)+gc(r1, r2). It is the correlation
contribution that is of interest here. In the long-range limit, i.e., |r1−r2| → ∞,
the correlation term gc(r1, r2) in the functionals that are derived from the ho-
mogenous electron gas [32,33] goes to zero by construction. Now let us consider
what this means for the single-ionization probability in the two-electron sys-
tem, which according to equations (43) and (45) is

P1(t) =
∫

A
d3r1

∫

Rd\A
d3r2n(r1)n(r2)g(r1, r2, t) . (46)

In this expression, r1 and r2 will be far apart from each other for the over-
whelming part of the integral because r1 and r2 are to be taken from compli-
mentary regions of space. This means that the correlation contribution from
the model functionals for gc will be negligible. Thus, the result for P1 will be
very close to the exchange-only result. But from the relation

P1 + 2P2 =
∫

Rd\A
d3r2n(r2) , (47)

which can be verified by inserting equations (43) and (44), it is clear that then,
for given density, also P2 will be very close to the exchange-only value. Due
to the requirement P0 + P1 + P2 = 1, the same statement then holds for P0.
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This shows that any functional gc[n](r1, r2) that tends to zero in the long-range
limit will not lead to ionization probabilities that differ significantly from the
exchange-only values. This is not a failure of the model functionals: They were
designed to model the short-ranged (dynamical) correlation, whereas for the
ionization problem, one is interested in long-range correlation effects.

Therefore, developing density functionals for the pair-correlation function from
a new perspective is of great importance. As a tiny outlook we would here like
to mention that in the one-dimensional model, the exact pair-correlation func-
tion can be calculated from the exact wave function, through equations (41)
and (45). In figure 5 several cross-sections of the pair-correlation function
are shown for the correlated two-electron ground state of our model atom.
When one electron is near the nucleus, the other electron is distributed al-
most according to the single-electron density, with only a relatively small hole
near the nucleus. However, if the reference electron is further away from the
nucleus, the hole in the distribution of the other electron is deeper and the
electrons are more strongly correlated. Investigating the density functional of
the pair-correlation function will be be an important aspect of future work.

5 Conclusions

We investigated numerical problems that one has to face in calculating quan-
tum mechanical, nonperturbative strong-field dynamics. Two different ap-
proaches to the quantum dynamics were discussed, namely propagation of
the correlated many-particle wave function and time-dependent density func-
tional theory. In both approaches, great care has to be taken to achieve an
accurate initial state from which the dynamics is started. A method was pro-
posed for achieving acceptable accuracy efficiently and with a straightforward
algorithm using a combination of imaginary-time propagation and a linear
scheme. Another source of errors in dynamical calculations is the treatment of
the boundaries. We discussed that absorbing boundaries can severely influence
the results and that special care has to be taken in the interpretation of cor-
related wave-function calculations in which density has been absorbed at the
boundaries. Finally, we pointed out how results from accurate wave-function
based calculations can be used to improve the density functional description of
long-ranged, nonlinear electron dynamics. We have shown how to reconstruct
numerically the full, unapproximated Kohn-Sham potential from the density
and current of the exact system. This scheme can be used to compare the
exact exchange-correlation potential to commonly-used approximations.
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